推荐系统与机器学习
文章平均质量分 91
推荐系统发展,经典算法总结
Weiyaner
希望在搜索,推荐,NLP领域持续学习,持续产出。
《鸡声茅店月,人迹板桥霜》
展开
-
Multi-modal Knowledge Graphs for Recommender Systems论文解读
美团基于多模态知识图谱的推荐系统论文原创 2022-07-06 19:18:48 · 980 阅读 · 0 评论 -
美团·阿里关于多模态召回的应用实践
美团。阿里关于多模态召回的应用实践原创 2022-06-30 20:28:44 · 1219 阅读 · 0 评论 -
评估指标及代码实现(NDCG)
机器学习领域,推荐/搜索算法的常用评估指标,NDCG等原创 2022-06-22 18:20:08 · 8819 阅读 · 3 评论 -
关于负样本采样的一些思考
负样本采样是选择“随机采样”还是“曝光未点击”,这得看所处的任务模式在召回还是排序阶段。原创 2022-04-26 16:32:20 · 956 阅读 · 0 评论 -
图神经网络GNN在推荐系统的应用:综述
参考:论文1:《Graph Neural Networks in Recommender Systems: A Survey》https://arxiv.org/pdf/2011.02260.pdf论文2:《Graph Neural Networks for Recommender Systems:Challenges, Methods, and Directions》https://arxiv.org/pdf/2109.12843.pdf1 介绍1.1 推荐系统发展的三个阶段回顾一原创 2022-04-02 18:05:10 · 4811 阅读 · 0 评论 -
推荐系统的多样性总结
文章目录1 推荐系统为何需要多样性2 多样性类型3 多样性评价指标4 如何改进多样性召回阶段——多路融合排序阶段——多特征建模重排阶段不同用户的多样性需求分析推荐系统的多样性反应了一个推荐列表中内容不相似的程度。通过推荐多样性更高的内容,既能够给用户更多的机会去发现新内容,也能够让推荐系统更容易发现用户潜在的兴趣。需要注意的是,精确性和多样性是一对Trade Off,提升多样性的代价往往以牺牲准确性为代价,因此如何平衡准确性和多样性是一个需要权衡的地方,或者从另一个角度讲如何在短期目标和长期目标间做平衡原创 2022-04-02 14:39:05 · 4703 阅读 · 5 评论 -
推荐系统(7)——推荐算法4(深度学习时代来临:模型结构上的突破)ACF、DIN、DIEN、DRN
注意力机制,时序模型,强化学习在深度推荐算法上的结合原创 2022-01-08 22:47:29 · 1795 阅读 · 0 评论 -
推荐系统(6)——推荐算法3(深度学习时代来临:AutoRec,Deep Crossing,NeuralCF,PNN,Wide&Deep,FNN,DeepFM,NFM)
从2015年的AutoRec开始,全面有序的总结深度学习在推荐系统领域的发展原创 2022-01-05 17:04:55 · 1819 阅读 · 0 评论 -
推荐系统(5)——推荐算法2(POLY2-FM-FFM-GBDT-MLR)
文章目录1 CTR简介2 逻辑回归——融合多种特征的推荐模型2.1 基于逻辑回归的推荐流程2.2 LR的数学形式2.3 逻辑回归在推荐上的优劣分析1 优势2 局限3 从FM到FFM——特征自动交叉的解决方案3.1为什么需要特征交叉?——辛普森悖论3.2 POLY2模型——特征交叉的开始3.2 什么是FM1 从LFM说起2 FM解决了POLY2的特征交叉计算问题3 隐变量的理解4 梯度下降求参3.3 FFM模型——引入特征域的概念1 CTR简介CTR(click through rate),点击率。是用户原创 2021-12-29 20:57:33 · 1956 阅读 · 0 评论 -
推荐系统(3)——个性化推荐系统架构
关于推荐系统的技术架构,我认为应该是作为一个初学者首先需要认识的很明显,推荐算法是属于推荐系统的一部分。1 推荐系统架构图——baseline根据以上的很简单的架构图可以看出,一个推荐系统可以概括为f(U,I,C)f(U, I, C)f(U,I,C):基于用户(User)+物品(Item)+场景(Context)信息,从系统中的物品库中,给对应的用户推荐相应的物品,也即实现所谓的”千人千面“。基于图文1.1,我们可以看到的推荐系统完成一次推断的流程为:读取数据(ETL)读取用户数据读取物品数原创 2021-12-27 23:08:00 · 6154 阅读 · 0 评论 -
推荐系统(4)——推荐算法1(基于内容和协同过滤)
文章目录1 基于内容的推荐(Content Based)1.1原理1.2 算法流程1.3 优/缺点2 协调过滤(Collaborative Filtering)2.1 CF的理论基础(1)U-U矩阵相似度计算(Pearson系数)(2)V-V矩阵相似度计算(余弦相似度)(3)U-V矩阵降维2.2 基于领域的协调过滤推荐(1)User-CF(2)Item-CF(3) 两种模式的比较2.3 基于模型的协同过滤推荐(1)基于隐语义模型(latent factor model,LFM)1.LFM简介2.数学推导3.原创 2021-12-27 21:06:11 · 6666 阅读 · 0 评论 -
推荐系统(2)——评测指标
根据评测体系来评价一个推荐系统的好坏,由于推荐系统是和实际收益挂钩,所以需要考虑三方(用户,物品提供者和平台)的利益,实现最大化的三方共赢。接下来从实验方法,评测指标和评测维度\red{实验方法,评测指标和评测维度}实验方法,评测指标和评测维度进行介绍1 实验方法通过实验来获取评价指标,主要有三个:1.1 离线实验(offline experiment)在一个离线的数据集上完成,不需要一个实际的系统作为支撑,只需要有一个从日志中提取的数据集即可。1、步骤a)通过日志系统获得用户行为数据,并按原创 2021-12-18 22:23:41 · 1290 阅读 · 4 评论 -
推荐系统(1)——简介
简介推荐系统:recommendation system推荐系统背景信息过载:面对海量的信息,如何提供客户想要的信息分类目录:1990s Hao 123 Yahoo搜索引擎:2000s Google Baidu推荐系统:2010s 不需要客户提供准确的信息,通过分析客户的历史行为来进行对用户的兴趣建模,从而提供客户满意的信息。RS的目的让用户更好的获取自己需要的内容让内容更快更好的推动到适用人群让平台跟有效的保留用户资源RS应用电子商务的推荐系统之王:Amazon原创 2021-12-16 15:56:43 · 999 阅读 · 1 评论