模型线上线下一致性问题

线下可能很好,但是线上表现并不如意,对于这种线上线下一致性问题,是机器学习模型在上线之后经常遇到的问题。

围绕着这个问题,从多个角度来考虑该问题。

1 特征维度

数据作为模型的输入,决定着模型的上限。一般一致性问题在数据的表现为:

1.1 线上线下的处理方式不同

针对同样的特征输入,离线和在线的处理方式不同,如input_schema配置没对齐特征抽取不一致等,这是最容易出现的情况。

解决方法

一般是离线和在线共用同一套特征抽取框架,同时每次模型上线前先生成一批待校验的一致性样本,对比每条样本在离线打分和在线打分的gap,小于一定阈值(如1e-6)算一致性通过

1.2 特征更新延迟性

user侧和item侧的特征一般以正排方式储存在key-value载体中,根据特征类型的不同更新时效性也可以分为:

  • 长期更新:user的年龄、性别、婚否、是否有孩子等长期比较稳定的用户画像特征
  • 天级更新:user最近7天/14天在该appid上的pv个数、click个数、conv个数、ctr、cvr等按天统计的中长期兴趣特征
  • 小时级更新:user的精准兴趣、广泛兴趣、app安装列表等按小时统计的近实时特征
  • 实时更新:user最近互动过的adid、appid、industry_id,item实时反馈特征,session序列特征

对于天级更新、小时级更新和实时更新这些对时效性比较敏感的特征,如果出现了更新延

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Weiyaner

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值