概率论 基础(一)

基本的古典概率和基本定义就不再说明。

1.条件概率

A 、 B 是 两 个 事 件 , 且 P ( A ) > 0 A、B是两个事件,且P(A)>0 ABP(A)>0,称 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
为在事件A发生的条件下事件B发生的条件概率。由此,得公式 P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(AB)=P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A)P(BA)=P(B)P(AB)
称为概率的乘法公式

2.全概率公式

A 1 , A 2 , . . . , A n 为 样 本 空 间 Ω 的 一 个 有 限 完 备 事 件 组 , 且 P ( A i ) > 0 A_1,A_2,...,A_n为样本空间\Omega的一个有限完备事件组,且P(A_i)>0 A1,A2,...,AnΩP(Ai)>0,所以:
1. A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An互不相容, A i ∈ A j = ϕ A_i\in{A_j}=\phi AiAj=ϕ
2. A 1 ∪ A 2 ∪ . . . ∪ A n = Ω A_1\cup{A_2}\cup...\cup{A_n}=\Omega A1A2...An=Ω
则对 Ω \Omega Ω中任意一个事件B都有 P ( B ) = P ( B A 1 ) + P ( B A 2 ) + . . . + P ( B A n ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(BA_1)+P(BA_2)+...+P(BA_n)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+...+P(A_n)P(B|A_n) P(B)=P(BA1)+P(BA2)+...+P(BAn)=P(A1)P(BA1)+P(A2)P(BA2)+...+P(An)P(BAn)
这就是全概率公式

3.贝叶斯公式

B 是 样 本 空 间 Ω 的 一 个 事 件 , A 1 , A 2 , . . . , A n 为 S 的 一 个 完 备 事 件 组 , B是样本空间\Omega的一个事件,A_1,A_2,...,A_n为S的一个完备事件组, BΩA1,A2,...,AnS P ( A k ∣ B ) = P ( A k B ) P ( B ) = p ( A k ) P ( B ∣ A k ) P ( A 1 ) P ( B ∣ A 1 ) + . . . + P ( A n ) P ( B ∣ A n ) P(A_k|B)=\frac{P(A_kB)}{P(B)}=\frac{p(A_k)P(B|A_k)}{P(A_1)P(B|A_1)+...+P(A_n)P(B|A_n)} P(AkB)=P(B)P(AkB)=P(A1)P(BA1)+...+P(An)P(BAn)p(Ak)P(BAk)
这个公式称为贝叶斯公式,也称为逆概公式或后验概率公式
贝叶斯公式在概率论和数理统计中有着多方面的应用,假定 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是导致实验结果的“原因”, P ( A i ) P(A_i) P(Ai)称为先验概率,它反映了各种“原因”发生的可能性大小,一般是以往经验的总结,在实验之前就已经知道。现在,实验结果B发生了,这个信息有助于探讨事件发生的“原因”。条件概率 P ( A i ∣ B ) P(A_i|B) P(AiB)称为后验概率,它反映了试验之后对各种“原因”发生的可能性大小的新知识。

4.伯努利试验

只有两个可能结果的试验称为伯努利试验
一次伯努利试验,可能的结果只有两个: P ( A ) = p , P ( A ˉ ) = 1 − p = q P(A)=p, P(\bar{A})=1-p=q P(A)=p,P(Aˉ)=1p=q所以伯努利分布也称为两点分布。
n重伯努利试验中,A恰好出现k次的概率记做 b ( k ; n , p ) b(k;n,p) b(k;n,p),值为 b ( k ; n , p ) = C n i p i q n − i = n ! ( n − i ) ! i ! p i q n − i b(k;n,p)=C_n^ip^iq^{n-i}=\frac{n!}{(n-i)!i!}p^iq^{n-i} b(k;n,p)=Cnipiqni=(ni)!i!n!piqni

5.二项分布的泊松(poisson)逼近

泊松定理:
设随机变量 X 服 从 二 项 分 布 b ( k ; n , p n ) , 且 lim ⁡ n → ∞ n p n = λ > 0 X服从二项分布b(k;n,p_n),且{\lim_{n\to{\infty}}}np_n=\lambda>0 Xb(k;n,pn),limnnpn=λ>0 lim ⁡ n → ∞ b ( k ; n , p n ) = lim ⁡ n → ∞ C n k p n k ( 1 − p n ) n − k = λ k k ! e − λ \lim_{n\to\infty}b(k;n,p_n)=\lim_{n\to\infty}C_n^kp_n^k(1-p_n)^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda} limnb(k;n,pn)=limnCnkpnk(1pn)nk=k!λkeλ
在应用中,当n很大,且p很小时,而np是一个大小适当的数时,有以下泊松分布近似公式:
C n k p k ( 1 − p ) n − k ≈ ( n p ) k k ! e − n p C_n^kp^k(1-p)^{n-k}\approx\frac{(np)^k}{k!}e^{-np} Cnkpk(1p)nkk!(np)kenp

6.泊松分布

如果随机变量X所有可能取的值为0,1,2…,它取各个值的概率为: P ( X = k ) = λ k k ! e − λ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda} P(X=k)=k!λkeλ 其中 λ > 0 \lambda>0 λ>0是常数, 则 称 X 服 从 参 数 为 λ 的 泊 松 分 布 , 记 为 X ∼ P λ ( k ) 则称X服从参数为\lambda的泊松分布,记为X\sim{P_{\lambda}(k)} XλXPλ(k)

连续型随机变量的分布

7.均匀分布

f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其 他 f(x)= \begin{cases} {\frac1{b-a}},& {a\le{x}\le{b}}\\ 0,& {其他} \end{cases} f(x)={ba1,0,axb则称 X 服 从 [ a , b ] X服从[a,b] X[a,b]均匀分布,记为 X ∼ U [ a , b ] X\sim{U}[a,b] XU[a,b]
那么有 P ( c ≤ X ≤ d = ∫ c d f ( x ) d x = d − c b − a P(c\le{X}\le{d}=\int_c^df(x)dx=\frac{d-c}{b-a} P(cXd=cdf(x)dx=badc

8.指数分布

如果随机变量 X X X的概率密度为:
f ( x ) = { λ e λ x , x ≥ 0 0 , x ≤ 0 f(x)= \begin{cases} \lambda{e}^{\lambda{x}},& {x\ge0}\\ 0,& {x\le0} \end{cases} f(x)={λeλx,0,x0x0其中 λ > 0 \lambda>0 λ>0,则称 X X X服从参数为 λ \lambda λ的指数分布,记为 X ∼ e λ ( x ) X\sim{e_{\lambda}(x)} Xeλ(x)
指数分布的重要性还表现在它具有类似于集合分布的“无记忆性”,随机变量 X X X分从指数分布,则对于任意的 s > 0 和 t > 0 s>0和t>0 s>0t>0,有
P ( X > s + t ∣ X > s ) = P ( X > t ) P(X>s+t|X>s)=P(X>t) P(X>s+tX>s)=P(X>t)

9.正态分布

如果随机变量 X X X的概率密度为
f ( x ) = 1 2 π σ e − 1 2 σ 2 ( x − μ ) 2 , ( − ∞ &lt; x &lt; + ∞ ) f(x)=\frac1{\sqrt{2\pi}\sigma}e^{-\frac1{2\sigma^2}(x-\mu)^2}, (-\infty &lt; x &lt; +\infty) f(x)=2π σ1e2σ21(xμ)2,(<x<+)
其中 σ &gt; 0 , σ , μ \sigma&gt;0,\sigma,\mu σ>0,σ,μ为常数,则称 X X X服从参数为 σ , μ \sigma,\mu σ,μ的正态分布,记为 X ∼ N ( μ , σ 2 ) X\sim{N}(\mu,\sigma^2) XN(μ,σ2)
特别的,当 μ = 0 , σ 2 = 1 \mu=0,\sigma^2=1 μ=0,σ2=1时,称 X X X服从标准正态分布,即 X ∼ N ( 0 , 1 ) X\sim{N}(0,1) XN(0,1)
另一重要性质是,对于 X ∼ N ( μ , σ 2 ) X\sim{N}(\mu,\sigma^2) XN(μ,σ2),则随机变量 ξ = X − u σ \xi=\frac{X-u}{\sigma} ξ=σXu服从标准正态分布,将 ξ = X − u σ \xi=\frac{X-u}{\sigma} ξ=σXu称为 X X X的标准化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值