Kafka Producer在发送消息时必须配置的参数为:bootstrap.servers、key.serializer、value.serializer。序列化操作是在拦截器(Interceptor)执行之后并且在分配分区(partitions)之前执行的。
首先我们通过一段示例代码来看下普通情况下Kafka Producer如何编写:
public class ProducerJavaDemo {
public static final String brokerList = "192.168.0.2:9092,192.168.0.3:9092,192.168.0.4:9092";
public static final String topic = "hidden-topic";
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("client.id", "hidden-producer-client-id-1");
properties.put("bootstrap.servers", brokerList);
Producer producer = new KafkaProducer(properties);
while (true) {
String message = "kafka_message-" + new Date().getTime() + "-edited by hidden.zhu";
ProducerRecord producerRecord = new ProducerRecord(topic,message);
try {
Future future = producer.send(producerRecord, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception exception) {
System.out.print(metadata.offset()+" ");
System.out.print(metadata.topic()+" ");
System.out.println(metadata.partition());
}
});
} catch (Exception e) {
e.printStackTrace();
}
try {
TimeUnit.MILLISECONDS.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
这里采用的客户端不是0.8.x.x时代的Scala版本,而是Java编写的新Kafka Producer, 相应的Maven依赖如下:
org.apache.kafka
kafka-clients
1.0.0
上面的程序中使用的是Kafka客户端自带的org.apache.kafka.common.serialization.StringSerializer,除了用于String类型的序列化器之外还有:ByteArray、ByteBuffer、Bytes、Double、Integer、Long这几种类型,它们都实现了org.apache.kafka.common.serialization.Serializer接口,此接口有三种方法:
public void configure(Map configs, boolean isKey):用来配置当前类。
public byte[] serialize(String topic, T data):用来执行序列化。
public void close():用来关闭当前序列化器。一般情况下这个方法都是个空方法,如果实现了此方法,必须确保此方法的幂等性,因为这个方法很可能会被KafkaProducer调用多次。
下面我们来看看Kafka中org.apache.kafka.common.serialization.StringSerializer的具体实现,源码如下:
public class StringSerializer implements Serializer {
private String encoding = "UTF8";
@Override
public void configure(Map configs, boolean isKey) {
String propertyName = isKey ? "key.serializer.encoding" : "value.serializer.encoding";
Object encodingValue = configs.get(propertyName);
if (encodingValue == null)
encodingValue = configs.get("serializer.encoding");
if (encodingValue != null && encodingValue instanceof String)
encoding = (String) encodingValue;
}
@Override
public byte[] serialize(String topic, String data) {
try {
if (data == null)
return null;
else
return data.getBytes(encoding);
} catch (UnsupportedEncodingException e) {
throw new SerializationException("Error when serializing string to byte[] due to unsupported encoding " + encoding);
}
}
@Override
public void close() {
// nothing to do
}
}
首先看下StringSerializer中的configure(Map configs, boolean isKey)方法,这个方法的执行是在创建KafkaProducer实例的时候调用的,即执行代码Producer producer = new KafkaProducer(properties)时调用,主要用来确定编码类型,不过一般key.serializer.encoding或serializer.encoding都不会配置,更确切的来说在Kafka Producer Configs列表里都没有此项,所以一般情况下encoding的值就是UTF-8。serialize(String topic, String data)方法非常的直观,就是将String类型的data转为byte[]类型即可。
如果Kafka自身提供的诸如String、ByteArray、ByteBuffer、Bytes、Double、Integer、Long这些类型的Serializer都不能满足需求,读者可以选择使用如Avro、JSON、Thrift、ProtoBuf或者Protostuff等通用的序列化工具来实现,亦或者是使用自定义类型的Serializer来实现。下面就以一个简单的例子来介绍下如何自定义类型的使用方法。
假设我们要发送的消息都是Company对象,这个Company的定义很简单,只有名称name和地址address,具体如下:
public class Company {
private String name;
private String address;
//省略Getter, Setter, Constructor & toString方法
}
接下去我们来实现Company类型的Serializer,即下面代码示例中的DemoSerializer。
package com.hidden.client;
public class DemoSerializer implements Serializer {
public void configure(Map configs, boolean isKey) {}
public byte[] serialize(String topic, Company data) {
if (data == null) {
return null;
}
byte[] name, address;
try {
if (data.getName() != null) {
name = data.getName().getBytes("UTF-8");
} else {
name = new byte[0];
}
if (data.getAddress() != null) {
address = data.getAddress().getBytes("UTF-8");
} else {
address = new byte[0];
}
ByteBuffer buffer = ByteBuffer.allocate(4+4+name.length + address.length);
buffer.putInt(name.length);
buffer.put(name);
buffer.putInt(address.length);
buffer.put(address);
return buffer.array();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return new byte[0];
}
public void close() {}
}
使用时只需要在Kafka Producer的config中修改value.serializer属性即可,示例如下:
properties.put("value.serializer", "com.hidden.client.DemoSerializer");
//记得也要将相应的String类型改为Company类型,如:
//Producer producer = new KafkaProducer(properties);
//Company company = new Company();
//company.setName("hidden.cooperation-" + new Date().getTime());
//company.setAddress("Shanghai, China");
//ProducerRecord producerRecord = new ProducerRecord(topic,company);
示例中只修改了value.serializer,而key.serializer和value.serializer没有什么区别,如果有真实需要,修改以下也未尝不可。
有序列化就会有反序列化,反序列化的操作是在Kafka Consumer中完成的,使用起来只需要配置一下key.deserializer和value.deseriaizer。对应上面自定义的Company类型的Deserializer就需要实现org.apache.kafka.common.serialization.Deserializer接口,这个接口同样有三个方法:
public void configure(Map configs, boolean isKey):用来配置当前类。
public byte[] serialize(String topic, T data):用来执行反序列化。如果data为null建议处理的时候直接返回null而不是抛出一个异常。
public void close():用来关闭当前序列化器。
下面就来看一下DemoSerializer对应的反序列化的DemoDeserializer,详细代码如下:
public class DemoDeserializer implements Deserializer {
public void configure(Map configs, boolean isKey) {}
public Company deserialize(String topic, byte[] data) {
if (data == null) {
return null;
}
if (data.length < 8) {
throw new SerializationException("Size of data received by DemoDeserializer is shorter than expected!");
}
ByteBuffer buffer = ByteBuffer.wrap(data);
int nameLen, addressLen;
String name, address;
nameLen = buffer.getInt();
byte[] nameBytes = new byte[nameLen];
buffer.get(nameBytes);
addressLen = buffer.getInt();
byte[] addressBytes = new byte[addressLen];
buffer.get(addressLen);
try {
name = new String(nameBytes, "UTF-8");
address = new String(addressBytes, "UTF-8");
} catch (UnsupportedEncodingException e) {
throw new SerializationException("Error occur when deserializing!");
}
return new Company(name,address);
}
public void close() {}
}
有些读者可能对新版的Consumer不是很熟悉,这里顺带着举一个完整的消费示例,并以DemoDeserializer作为消息Value的反序列化器。
Properties properties = new Properties();
properties.put("bootstrap.servers", brokerList);
properties.put("group.id", consumerGroup);
properties.put("session.timeout.ms", 10000);
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "com.hidden.client.DemoDeserializer");
properties.put("client.id", "hidden-consumer-client-id-zzh-2");
KafkaConsumer consumer = new KafkaConsumer(properties);
consumer.subscribe(Arrays.asList(topic));
try {
while (true) {
ConsumerRecords records = consumer.poll(100);
for (ConsumerRecord record : records) {
String info = String.format("topic=%s, partition=%s, offset=%d, consumer=%s, country=%s",
record.topic(), record.partition(), record.offset(), record.key(), record.value());
System.out.println(info);
}
consumer.commitAsync(new OffsetCommitCallback() {
public void onComplete(Map offsets, Exception exception) {
if (exception != null) {
String error = String.format("Commit failed for offsets {}", offsets, exception);
System.out.println(error);
}
}
});
}
} finally {
consumer.close();
}
有些时候自定义的类型还可以和Avro、ProtoBuf等联合使用,而且这样更加的方便快捷,比如我们将前面Company的Serializer和Deserializer用Protostuff包装一下,由于篇幅限制,笔者这里只罗列出对应的serialize和deserialize方法,详细参考如下:
public byte[] serialize(String topic, Company data) {
if (data == null) {
return null;
}
Schema schema = (Schema) RuntimeSchema.getSchema(data.getClass());
LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);
byte[] protostuff = null;
try {
protostuff = ProtostuffIOUtil.toByteArray(data, schema, buffer);
} catch (Exception e) {
throw new IllegalStateException(e.getMessage(), e);
} finally {
buffer.clear();
}
return protostuff;
}
public Company deserialize(String topic, byte[] data) {
if (data == null) {
return null;
}
Schema schema = RuntimeSchema.getSchema(Company.class);
Company ans = new Company();
ProtostuffIOUtil.mergeFrom(data, ans, schema);
return ans;
}
如果Company的字段很多,我们使用Protostuff进一步封装一下的方式就显得简洁很多。不过这个不是最主要的,而最主要的是经过Protostuff包装之后,这个Serializer和Deserializer可以向前兼容(新加字段采用默认值)和向后兼容(忽略新加字段),这个特性Avro和Protobuf也都具备。
自定义的类型有一个不得不面对的问题就是Kafka Producer和Kafka Consumer之间的序列化和反序列化的兼容性,试想对于StringSerializer来说,Kafka Consumer可以顺其自然的采用StringDeserializer,不过对于Company这种专用类型,某个服务使用DemoSerializer进行了序列化之后,那么下游的消费者服务必须也要实现对应的DemoDeserializer。再者,如果上游的Company类型改变,下游也需要跟着重新实现一个新的DemoSerializer,这个后面所面临的难题可想而知。所以,如无特殊需要,笔者不建议使用自定义的序列化和反序列化器;如有业务需要,也要使用通用的Avro、Protobuf、Protostuff等序列化工具包装,尽可能的实现得更加通用且向前后兼容。
题外话,对于Kafka的“深耕者”Confluent来说,还有其自身的一套序列化和反序列化解决方案(io.confluent.kafka.serializer.KafkaAvroSerializer),GitHub上有相关资料,读者如有兴趣可以自行扩展学习。
参考资料
PS:消息中间件(Kafka、RabbitMQ)交流可加微信:hiddenzzh
欢迎支持笔者新书:《RabbitMQ实战指南》以及关注微信公众号:Kafka技术专栏。