二阶齐次线性微分方程的通解公式_二阶常系数非齐次微分方程

(建议阅读原文)

预备知识 二阶常系数齐次微分方程结论
   在二阶常系数齐次微分方程的右端加上一个函数

, 就得到了二阶常系数非齐次微分方程

这就是 二阶常系数非齐次微分方程.其解为

其中
可以写成二阶行列式

其中
都是
的函数,后面的括号和自变量被省略.
是对应齐次方程

的两个线性无关的解. 应用 推导
   下面介绍的方法叫常数变易法,其主要思想可参考一阶线性非齐次微分方程的通解
   设通解的形式为

其中,
也是关于
的函数. 对该式两边求导,得

为了接下来计算方便,我们规定
满足关系1

把式 7 代入式 6 , 得到

继续对求导,得到

把式 5 式 8 式 9 代回原方程式 1 得

化简,得

由于
都是式 4 的解,式(9)化为

总结一下,刚刚的推导说明,和在(5)的假设条件下,只要满足(10)即可满足(1)式.联立(5)和(10)式,得到关于
的方程组

解得

其中

对(13)的两条式子积分,即可得到

(15)(16)代入(5)式,得到方程(1)的解为

由于上式满足线性微分方程解的结构,所这已经是通解了.但是必须注意,根据常数变易法,我们只能在没有零点的区间内找到方程式 1 的通解.

1. 这么规定会不会丢失一部分解呢?或许会,但是由于我们已经有了式 1 对应的齐次解

, 根据线性微分方程解的结构(见同济大学的《高等数学》),只需要找到式 1 的任意一个解,就可以找到它的通解.
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页