二阶齐次线性微分方程的通解公式_算子大法好:二阶非齐次微分方程特解

本文详细介绍了如何利用算子方法求解二阶非齐次线性微分方程,通过引入算子将复杂方程转化为简单形式,探讨了特解的存在性和求解过程,包括算子的性质和应用,逐步解析了不同情况下的解法策略。
摘要由CSDN通过智能技术生成

我们已经见过很多次形如

这样的方程了. 其解的形式我们也已经很清楚了. 对于这样的微分方程需要构造特征方程
. 若
,且
, 那么
. 若
,且
,则
. 若
,且
,那么
.

现在考虑非齐次方程

,其中
. 对于此方程的解
需要先猜一个满足该方程的特解
.
为了得到通解,需要找到齐次方程
的通解
,那么非齐次方程的通解就是
.

为了证明上面的定理,我们引入算子

.
Definition 1.1 假设
是一个连续可微的函数,定义
. 即
.

看上去我们只是把一个微分方程写成了比较简单的形式,但是仔细研究之后会发现算子

有很多有趣的性质. 我们先引入一个最平凡的性质:
Corollary 1.2 假设
是两个连续可微的函数,则有
.也就是说,算子
是线性的.

证明:带入得到

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值