神经网络 Embedding层理解; Embedding层中使用预训练词向量

本文介绍了神经网络中的Embedding层,其作用是将高维稀疏特征向量转化为低维稠密向量,用于深度学习模型。讨论了Embedding层在推荐系统和计算广告中的应用,并详细解释了Keras和PyTorch中如何实现预训练词向量的加载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Embedding层理解

高维稀疏特征向量到低维稠密特征向量的转换;嵌入层将正整数(下标)转换为具有固定大小的向量;把一个one hot向量变为一个稠密向量

参考:https://zhuanlan.zhihu.com/p/52787964

Embedding 字面理解是 “嵌入”,实质是一种映射,从语义空间到向量空间的映射,同时尽可能在向量空间保持原样本在语义空间的关系,如语义接近的两个词汇在向量空间中的位置也比较接近。
在这里插入图片描述

应用:

在深度学习推荐系统中,Embedding主要的三个应用方向:

1、在深度学习网络中作为Embedding层,完成从高维稀疏特征向量到低维稠密特征向量的转换;

2、作为预训练的Embedding特征向量,与其他特征向量连接后一同输入深度学习网络进行训练;

3、通过计算用户和物品的Embedding相似度,Embedding可以直接作为推荐系统或计算广告系统的召回层或者召回方法之一。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值