1、Embedding层理解
高维稀疏特征向量到低维稠密特征向量的转换;嵌入层将正整数(下标)转换为具有固定大小的向量;把一个one hot向量变为一个稠密向量
参考:https://zhuanlan.zhihu.com/p/52787964
Embedding 字面理解是 “嵌入”,实质是一种映射,从语义空间到向量空间的映射,同时尽可能在向量空间保持原样本在语义空间的关系,如语义接近的两个词汇在向量空间中的位置也比较接近。
应用:
在深度学习推荐系统中,Embedding主要的三个应用方向:
1、在深度学习网络中作为Embedding层,完成从高维稀疏特征向量到低维稠密特征向量的转换;
2、作为预训练的Embedding特征向量,与其他特征向量连接后一同输入深度学习网络进行训练;
3、通过计算用户和物品的Embedding相似度,Embedding可以直接作为推荐系统或计算广告系统的召回层或者召回方法之一。