ImageBind 多模态文本、图像、音频 Embedding同一个共享空间

ImageBind是一个能学习六种不同模态(图像、文本、音频、深度、热成像和IMU数据)联合嵌入的模型。它允许在单一空间中检索不同模态的相似信息。在Windows环境下,对文本和图像模态的相似度召回进行了测试,模型的Embedding向量维度为1024。预训练模型保存在.checkpoints/imagebind_huge.pth。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:
https://github.com/facebookresearch/ImageBind

ImageBind learns a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data

ImageBind 多个模态共享同一个空间Embedding,这样可以通过一个模态检索相似其他模态,相比CLIP文本图像两个模态,向外扩展了很多
在这里插入图片描述
在这里插入图片描述

代码测试

1、这边windows上测试的,由于audio相关库没装好,所以只测试了文本与图形相关模态的相似度召回计算;使用尽量还是linux机器


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值