机器学习算法实战系列:无监督学习全攻略——聚类与降维核心技术解析

机器学习算法实战系列:无监督学习全攻略——聚类与降维核心技术解析

引言

“数据没有标签怎么办?无监督学习能从混沌中发现秩序,揭示数据背后的隐藏模式!”

在现实世界中,大量数据是没有标签的,而无监督学习正是挖掘这类数据价值的利器。本文将深入讲解聚类和降维两大核心技术,从经典算法到最新进展,结合多个工业级案例,带你掌握从数据中发现知识的艺术。准备好探索数据的内在结构了吗?

第一部分:聚类算法深度解析

1.1 聚类基础与评估方法

聚类任务定义

给定数据集D={x₁,x₂,…,xₙ},将D划分为k个不相交的簇{C₁,C₂,…,Cₖ},使得:

  1. 同一簇内样本相似度高
  2. 不同簇间样本相似度低
评估指标
  • 内部指标(无需真实标签):

    • 轮廓系数(Silhouette Coefficient)
    • Calinski-Harabasz指数
    • Davies-Bouldin指数
  • 外部指标(需真实标签):

    • 调整兰德指数(ARI)
    • 标准化互信息(NMI)
    • 同质性(Homogeneity)

1.2 K-Means算法详解

算法步骤
  1. 随机选择k个中心点
  2. 将每个样本分配到最近的中心点形成簇
  3. 重新计算每个簇的中心点
  4. 重复2-3直到收敛
数学表达

最小化目标函数:

J = Σ Σ ||x - μᵢ||²
  i x∈Cᵢ

其中μᵢ是簇Cᵢ的中心。

Python实现
import numpy as np

class KMeans:
    def __init__(self, k=3, max_iter=100, tol=1e-4):
        self.k = k
        self.max_iter = max_iter
        self.tol = tol
        self.centroids = None
        
    def _init_centroids(self, X):
        indices = np.random.choice(len(X), self.k, replace=False)
        return X[indices]
    
    def _assign_clusters(self, X):
        distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)
        return np.argmin(distances, axis=1)
    
    def _update_centroids(self, X, labels):
        new_centroids = np.array([X[labels == i].mean(axis=0) 
                                for i in range(self.k)])
        return new_centroids
    
    def fit(self, X):
        self.centroids = self._init_centroids(X)
        
        for _ in range(self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值