【大模型微调实战】LoRA与QLoRA技术详解:用消费级GPU微调百亿参数模型

【大模型微调实战】LoRA与QLoRA技术详解:用消费级GPU微调百亿参数模型

💎 核心突破:QLoRA技术使65B大模型微调仅需24GB显存!附《千条指令微调数据集》📂

1. 参数高效微调原理

1.1 微调技术演进

方法 显存占用 可训练参数 典型场景 代表论文
Full Fine-tuning 100% 100% 大数据场景 BERT (2018)
Adapter 30%-50% 3%-10% 跨语言任务 Houlsby (2019)
Prefix-tuning 20%-40% 1%-5% 生成任务 Li & Liang (2021)
LoRA 15%-30% 1%-3% 通用任务 Hu (2021)
QLoRA 5%-15% 0.5%-2% 超大模型 Dettmers (2023)

1.2 LoRA数学原理

LoRA(Low-Rank Adaptation)的核心思想:

W ′ = W + Δ W = W + B A 其中 B ∈ R d × r , A ∈ R r × k , r ≪ m i n ( d , k ) W' = W + \Delta W = W + BA \\ \text{其中} \quad B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}, r \ll min(d,k) W=W+ΔW=W+BA其中BRd×r,ARr×k,rmin(d,k)

import torch
import torch.nn as nn

class LoRALayer(nn.Module):
    def __init__(self, original_layer, rank=8, alpha=16):
        super(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值