有关凸集的证明例题_「管理数学基础」3.1 凸分析:凸集与凸集分离定理、Farkas引理...

fe53207b1d49503486dcda4d6c074e8e.png

凸集与凸集分离定理、Farkas引理

凸集

定义:凸集

299d91e8c11848636c0fb1ba0948f91d.png

注意凸集的定义,任取两点满足某个条件为凸集:

  • 证明是凸集的目标有了
  • 凸集的性质也有了,可以利用

凸集性质(逐个证明)

(1)

ce5b789d3a494283b3476d50bfdfbfb0.png

1765eb4cd02567da9eb09d0a2273b39e.png

分析:

  • 任取
    ,因为是要证明
    是凸集
  • 也就是要对于所有的
    ,都有
  • 能利用的性质只有
    是凸集
    以及
    两个集合的关系(从微观上,一定存在
    中元素乘上实数
    中),应该在二者间建立联系

(2)

4810245e5e3be251d11c4baab0d8a851.png

6b9778a420961d15e6210da20560ad79.png

分析:

  • 与上一题思路相同

(3)

有限个凸集的交集为凸集。

d95bef7f65751f249f417d9c7f5e245f.png

由以上凸集性质,我们做下面两点例题。

2383c8e47eb9af5a59c1867a05333685.png

分析:

  • 分别在集合间取元素,根据集合性质建立元素间关系
  • 然后带回去,这样从原理出发计算不会出错

超平面

定义:超平面

3af5b34f46d39b9cb2665771316db0a0.png

分析:

  • 是直线,在
    是平面,在
    当然就是超平面了
  • 注意
    实际上超平面的法向量,与超平面垂直;
    决定了超平面的位置
  • 闭半空间一共有两个(一侧的点与法向量构成锐角,一侧是锐角)

证明:超平面是凸集

f4ffa5be754017b032c4f3b9700d1592.png

很简单,对于闭半空间是凸集同理,将

换成
即可。

定义:支撑超平面

b9c538e3613828e0c3a089b7c09b8148.png

分析:

  • “支撑”即超平面对这个空间的生成起了作用,“触碰”到了这个空间

定义:多面体

c30cc47224b7dfbe7c64d17ef438a9c6.png

多面体:

  • 是多胞形(上图的多胞形定义,我觉得不对)
  • 有界非空

定义:凸锥

b26196e5dfc1cdc784c488d055b6e92f.png

分析:

  • 经过原点
    ,因此超平面中
  • 相加,实际上表示了两个超平面的中和,即相互趋近

凸集分离定理

定义:分离

eca0275e24a6dda4ef98274971e6d4b2.png

分析:

  • 两个非空集合,可以被几何的概念(超平面)分开,不重叠(但是可以重叠在超平面上)
  • 如果没有
    即等号关系,则是
    严格分离

定义:凸集分离定理

b3aa7a7aafac186791898d81be566844.png

如上是凸集分离定理(如果两个集合是不相交的凸集,那么可以被一个超平面分开)。

证明过程很长,证明并应用了:Weierstrass定理、点集严格分离定理、支撑超平面定理。

Farkas引理

定义:Farkas引理

27d075029a3d9e343455a5c13ea0eac6.png

用于后面的凸规划,这里注意一点:

  • (1)有解了,(2)必无解

证明:Farkas引理

61ad2c57c524a013acc6831eb6f1e88a.png

首先,假设(1)有解,证明(2)无解即可;接着证明(1)无解情况下,(2)必有解,大概思路是:

  • ,由(1)无解可得
    ,由此,利用点集分离定理,得到
  • 进一步,由
    ,则有
    ,现在(2)的第二个式子已经证明完毕了,接下来是第一个式子
    的证明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值