AI学习指南深度学习篇-Python实践

AI学习指南深度学习篇 - Python实践

引言

在现代深度学习中,学习率是一个至关重要的超参数,它直接影响模型的收敛速度和最终效果。适当的学习率能够加速训练,但过大会导致模型不收敛,过小则可能导致训练过程过慢。因此,学习率衰减成为了深度学习中的一种常见策略,可以帮助我们在训练过程中逐步减小学习率。

在本篇文章中,我们将通过使用Python中的深度学习库(如TensorFlow和PyTorch)来演示学习率衰减的实现。同时,我们还将讨论在模型训练过程中如何进行有效的调参。

1. 学习率衰减的概念

学习率衰减指的是在训练过程中逐渐减小学习率的策略,目的是为了在训练初期快速收敛,并在后期细致优化。常用的学习率衰减策略包括:

  • 固定步长衰减:每隔固定步数就减小学习率。
  • 指数衰减:学习率按一定的指数基数衰减。
  • 余弦退火:学习率在一个固定范围内周期性变化。

2. 使用TensorFlow实现学习率衰减

2.1 环境准备

在开始之前ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值