AI学习指南深度学习篇 - Python实践
引言
在现代深度学习中,学习率是一个至关重要的超参数,它直接影响模型的收敛速度和最终效果。适当的学习率能够加速训练,但过大会导致模型不收敛,过小则可能导致训练过程过慢。因此,学习率衰减成为了深度学习中的一种常见策略,可以帮助我们在训练过程中逐步减小学习率。
在本篇文章中,我们将通过使用Python中的深度学习库(如TensorFlow和PyTorch)来演示学习率衰减的实现。同时,我们还将讨论在模型训练过程中如何进行有效的调参。
1. 学习率衰减的概念
学习率衰减指的是在训练过程中逐渐减小学习率的策略,目的是为了在训练初期快速收敛,并在后期细致优化。常用的学习率衰减策略包括:
- 固定步长衰减:每隔固定步数就减小学习率。
- 指数衰减:学习率按一定的指数基数衰减。
- 余弦退火:学习率在一个固定范围内周期性变化。
2. 使用TensorFlow实现学习率衰减
2.1 环境准备
在开始之前ÿ