Paper Reading:ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Motivation

以往的移动端的CNN设计在考虑计算节省时都直接致力于优化整体网络计算所需的Flops。但实际上一个网络模型的训练或推理过程Flops等计算只是其时间的一部分,其它像内存读写/外部数据IO操作等都会占不小比例的时间。所以不应只限于去片面追求理论Flops的减少, 该篇从内存访问代价(Memory Access Cost,MAC)和GPU并行性的方向分析了网络应该怎么设计才能进一步减少运行时间,直接的提高模型的效率。

architecture
  • 当输入通道数和输出通道数相同时,MAC最小

    假设一个卷积操作的输入Feature Map的尺寸是 w ∗ h ∗ c 1 w*h*c_1 whc1,输出Feature Map的尺寸为 w ∗ h ∗ c 2 w*h*c_2 whc2。卷积操作的FLOPs为 B = h w c 1 c 2 B=hwc_1c_2 B=hwc1c2。在计算这个卷积的过程中,输入Feature Map占用的内存大小是 h w c 1 hwc_1 hwc1,输出Feature Map占用的内存是 h w c 2 hwc_2 hwc2,卷积核占用的内存是 c 1 c 2 c_1c_2 c1c2。 当输入和输出通道数相等时,它达到最小值。

在这里插入图片描述

  • 过度的分组卷积会增加MAC

1*1分组卷积中MAC和FLOPs的关系是如下,g 为分组数。很明显, g 越大,MAC越大
在这里插入图片描述

  • 不可忽略元素级的操作

    对于元素级操作(element-wise operators),比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。深度卷积也算是元素级操作,也具有较高的MAC/FLOPs的比例。实验发现如果将ResNet中残差单元中的ReLU和shortcut移除的话,速度有20%的提升。

  • 网络结构

    最终设计出来满足上面几条原则的模型,右侧的输入输出通道数相同,且1*1卷积没有使用分组卷积,合并的时候使用concat,而不是add。

在这里插入图片描述

Experiments

  • classification
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值