Paper Reading:Learning Transferable Architectures for Scalable Image Recognition

Learning Transferable Architectures for Scalable Image Recognition

Motivation

NAS直接搜全部结构方法太慢,设计一个搜索空间较小的方法。即类似于LSTM中的子结构,重复堆叠这些子结构,从而得到较深的网络。

在这里插入图片描述

Architecture

对于两种不同的数据集,大致的设计了两种不同的网络结构,

在这里插入图片描述

确定好整体结构后,按照以下步骤

  • Step 1. Select a hidden state from hi, hi−1 or from the set of hidden states created in previous blocks.

  • Step 2. Select a second hidden state from the same options as in Step 1.

  • Step 3. Select an operation to apply to the hidden state selected in Step 1.

  • Step 4. Select an operation to apply to the hidden state selected in Step 2.

  • Step 5. Select a method to combine the outputs of Step 3 and 4 to create a new hidden state.
    在这里插入图片描述

第三步和第四步的操作合集如下,

在这里插入图片描述

第五步的操作合集如下,

(1) element-wise addition be- tween two hidden states or

(2) concatenation between two hidden states along the filter dimension

Experiment

最终得到的网络结果如下:

在这里插入图片描述

在分类上的结果,
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (which we call the “NASNet search space”) which enables transferability. In our experiments, we search for the best convolutional layer (or “cell”) on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, which we name a “NASNet architecture”. We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, a NASNet found by our method achieves 2.4% error rate, which is state-of-the-art. Although the cell is not searched for directly on ImageNet, a NASNet constructed from the best cell achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS – a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the image features learned from image classification are generically useful and can be transferred to other computer vision problems. On the task of object detection, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值