对于新高一的学生,初学函数,都会有一定的困惑,连基础的y=f(x)都要有一定的消化时间,为什么函数一定要用这样一个符号进行表达?随着学习的深入,以及对函数的逐渐理解,开始一点点的接受高中函数的模式。进入函数学习的第一模块,便是函数的概念和表示方法,其中包括定义域的求法、相同函数的概念、解析式的求法以及值域的求法等等,在接下来的一段时间,老师会分模块的把函数的知识点按考点考法进行剖析,跟紧老师,拿下函数这块硬骨头将不再是梦想。
大家应该知道,在我们印象中,函数的自变量如果出现在分母的式子中,势必会受分母不为零的影响,如果出现在偶根式中,也一定会受被开方数是非负这样要求的约束,还有一些是有现实背景函数关系式,比如,路程等于速度乘以时间,如果时间是自变量,那最起码没有负的时间。
这些都能启发我们,不是每一个函数的自变量,都能想取几就可以取几,反之就是有很多函数的自变量都会受到很多情况的制约,这样一来,与自变量对应的函数值也一定会受到类似的约束。
所以高中阶段的函数会把自变量的取值范围,因变量的取值范围,以及两个变量的对应关系合起来称为函数的三要素。
「微课」具体函数的定义域
真题解析 ------------------------------(点击空白处查看内容)
▼
答案:D分析:根据二次函数的性质得到函数的定义域即可.解答:解:由题意得:x(3−x)≥0x−1>0,解得:1<x≤3,
故选:D.点评:本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.
(点击空白处查看内容)
▼
答案:C分析:可令⎷x+1=t,根据x的范围,可求出t∈(1 |
2 |
∵x∈(−
3 |
4 |
∴t∈(
1 |
2 |
∴x=t 2-1;
∴y=2(t 2−1)−3t=2(t−
3 |
4 |
25 |
8 |
∴t=
3 |
4 |
25 |
8 |
∴f(x)的值域为:[−
25 |
8 |
故选:C.点评:考查函数值域的概念及求法,换元法求函数的值域,不等式的性质,以及配方求二次函数值域的方法.
(点击空白处查看内容)
▼
答案:(-∞,1)分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:依题意,得1-x>0,解得x<1,∴函数f(x)=
1 |
⎷1−x |
故答案为:(-∞,1).点评:本题考查了函数自变量的取值范围:注意分式有意义,分母不为0;二次根式的被开方数是非负数.
(点击空白处查看内容)
▼
答案:A分析:从根式函数入手,根据负数不能开偶次方根及分母不为0求解结果,然后取交集.解答:解:根据题意:{ | 1−2x≥0x+3>0 |
解得:-3<x≤0
∴定义域为(-3,0]
故选:A.点评:本题主要考查函数求定义域,负数不能开偶次方根,分式函数即分母不能为零,及指数不等式的解法.
(点击空白处查看内容)
▼
分析:可得出f(x)有意义时,x>−t |
3 |
t |
3 |
1 |
⎷3x+t |
t |
3 |
∵x∈[-1,2]时,f(x)恒有意义;
∴−
t |
3 |
∴t>3;
∴实数t的取值范围为(3,+∞).
故答案为:(3,+∞).点评:考查函数定义域的概念及求法,能用数轴表示集合.
函数的概念及其表示
课件链接: https://pan.baidu.com/s/1-7kMi8194xtfv1RuBnB-kQ
提取码: bsn9
相关文章
● 高中数学·必修1 | 集合的运算+真题解析+课件
● 高中数学·必修1 | 充分条件与必要条件 真题解析+课件
● 高中数学·必修1 | 全称量词与存在量词 真题解析+课件
● 高中数学·必修1 | 不等式比大小 真题解析+课件
● 高中数学·必修1 | 不等式性质 真题解析+课件
● 高中数学·必修1 | 均值不等式 真题解析+课件
● 高中数学·必修1 | 凑项利用均值求最值 真题解析+课件
● 高中数学·必修1 | 解一元二次不等式 真题解析+课件
● 高中数学·必修1 | 不等式的实际应用 真题解析+课件
致各位读者:因为公众号平台改变了推送规则,如果想正常看到“提分高中生”的推送,记得标星哦,大家在阅读后可在文末右下角点一下“在看”,我们每次的新文章就会第一时间出现在你的订阅列表里。
声明 视频来源乐学堂,本文由提分高中生(ID:tifengzs)编辑整理,版权归相关权利人所有,转载请注明出处和相关链接,否则追究其法律责任!