莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
int euler_phi(int n)
{
int m=(int)sqrt(n+0.5);
int ans=0;
for(int i=2;i<=m;i++) if(n%(i)==0)
{
ans++;
n/=i;
if(n%i==0)
{
ans=-1;
break;
}
}
if(n>1) ans++;
if(ans==-1) return 0;
else return ans;
}
int main()
{
int n;
while(scanf("%d",&n)!=-1)
{
int x=euler_phi(n);
if(x==0) printf("0\n");
else if(x%2) printf("-1\n");
else printf("1\n");
}
return 0;
}