与典型发育的对照组相比,自闭症谱系障碍(ASD)个体的大脑皮质厚度左右不对称性存在轻微但广泛的差异。这些区域性的改变可能对脑结构网络产生的影响,此前尚未得到明确表征。区域间形态协方差分析可以在宏观尺度水平上反映不同皮质区域间的网络连接特征。在本研究中,我们使用了来自ENIGMA联盟ASD工作组的43个独立数据集,包括1455名ASD个体与1560名对照个体的大脑皮质厚度数据,基于图论拓扑指标评估了个体内结构协方差网络的半球不对称性。
与对照组典型的小世界结构特征相比,ASD组在包括梭状回、吻侧中额回及内侧眶额皮质在内的脑网络中表现出显著改变的平均不对称性,具体体现为ASD个体右半球相应网络的随机化程度更高。而以脑上额皮质为中心的网络则表现为右半球随机化程度降低。进一步结合荟萃分析的功能影像数据进行比较发现,这些连接不对称性的改变尤其影响执行功能、语言相关及感觉运动处理相关的网络。
上述发现基于大样本数据,从网络水平揭示了ASD中大脑左右不对称性改变的特征。ASD中异常的不对称大脑发育可能会通过结构连接部分地传播至空间上相距较远的脑区。本文发表在Molecular Psychiatry杂志。
引言
自闭症谱系障碍(ASD)是一种起病于儿童时期的神经发育障碍,其患病率约为1% 。ASD患者的典型特征包括社会沟通和互动方面的困难,以及受限和/或重复性的行为模式,这些特征会严重影响个体生活中的主要功能领域。语言发育迟缓也是该障碍的常见特征之一。
在大部分人群中,与社会认知和语言功能相关的脑区通常表现出功能影像学上的偏侧化激活(lateralized activation)。例如,约90%的成人在词汇生成任务时表现为左半球优势,尤其涉及额下回和颞叶皮质的激活;而心理理论(theory-of-mind)任务则通常导致右侧颞顶交界区附近区域的偏右优势激活。多项研究指出,这些功能性不对称特征在ASD患者中可能发生了改变。功能磁共振成像(fMRI)研究发现,在语言和社会认知任务过程中,自闭症症状的严重程度和ASD的病例-对照状态与激活或区域间连接的偏侧性降低有关。正电子发射断层扫描(PET)研究也发现在句子处理任务中,ASD成人患者左半球额叶皮质激活减少。脑磁图(MEG)研究显示,ASD儿童在被动听觉元音刺激时皮质电生理偏侧化的成熟过程发生了变化。在脑结构层面,已有研究发现ASD个体与语言或社会认知相关的关键皮质区域(如颞叶侧部区域和梭状回)表现出不对称性改变。此外,非右利手(与大脑不对称相关的一种行为特征)在ASD患者中的比例也更高,荟萃分析进一步证实了这一点。这些研究提示,不对称神经发育的异常与ASD的行为特征存在病因上的联系。
我们最近开展了迄今为止规模最大的ASD脑结构不对称性研究,分析了来自国际ENIGMA联盟(通过荟萃分析促进神经影像遗传学研究,Enhancing Neuro-Imaging Genetics through Meta-Analysis)的ASD工作组多个数据集的1774名ASD患者和1809名对照个体。研究发现,ASD最显著地表现为广泛的皮质厚度不对称性改变,涉及内侧额叶皮质、后扣带回和颞下回皮质,这些区域也正好是ASD患者语言和社会认知任务功能偏侧化发生改变的区域[12,13]。
ASD中皮质厚度不对称性改变的广泛性,涉及多个非连续区域,提出了新的问题:ASD是否存在拓扑网络组织不对称性的改变?如果存在,具体哪些皮质区域参与了这种结构网络的改变?利用无创结构MRI获得的皮质厚度数据,通过研究不同区域间厚度测量值的协方差,可以揭示脑网络组织情况,这种方法已广泛用于分析其他疾病或健康个体的脑结构。皮质厚度是一种广泛应用的形态学指标,用于估计这类结构网络,它与神经元的大小和密度、功能连接及白质连接有关。尽管目前尚未完全明确区域间皮质厚度协变的形成机制,但一个主流假说认为,突触可在突触前后神经元之间产生营养和保护效应,从而增强区域间连接,最终在宏观解剖层面表现为协方差。此外,神经元的同步放电可能促进协同突触发生及连接紧密区域的生长。
神经连接也可能在空间上相距较远的脑区间传播病理过程,因此一些脑疾病被部分视作“失联综合征”(disconnection syndromes)。例如,与典型发育的对照组相比,ASD患者额颞叶皮质区域的厚度结构协方差较低,这种关联可能还受到语言和社会认知能力的调节。然而,这些研究所定义的区域往往以已有的语言功能知识为基础,而ASD患者的皮质厚度改变更为广泛。脑组织的转录组学分析已表明ASD存在多条受干扰的生物学通路,影响细胞数量、皮质模式化和分化、轴突导向、突触活动以及可塑性相关过程,这也提示ASD对皮质结构的影响远不止语言核心区域。
两个皮质区域之间的结构连接可以通过区域间皮质厚度在组水平上跨个体的Pearson相关性得出(如病例组或对照组)。但这种跨个体的方法只能得到组水平的连接度量。另一种方法(本研究所采用)则是测量个体内部结构协方差,即在单个个体内不同脑区之间的结构协方差。这种方法能在个体水平捕捉全局和区域网络特征,此前已用于各种精神和神经疾病的研究(具体方法见下文)。重要的是,由于个体内部方法能生成个体化的拓扑指标,因此不仅可以进行病例-对照的组水平平均效应分析,还能用于分析ASD患者中网络拓扑特征与临床变量的关联。
迄今为止,ASD拓扑网络连接研究受限于样本量小、效应微弱以及ASD神经生物学的高度异质性。此外,目前尚未有研究在全脑半球水平探讨过ASD结构协方差网络连接可能存在的不对称性改变。本研究假设,ASD患者的半球皮质厚度协方差网络架构存在轻微但整体性的重组,其表现为区域间连接的不对称性改变,可能涉及先前逐区域研究发现的分散的不对称区域。我们使用了ENIGMA联盟ASD工作组成员收集的43个数据集(1455名ASD患者和1560名对照个体)的结构MRI数据,首次在整个皮质水平上进行了基于图论的ASD结构协方差网络不对称性分析。随后,我们利用功能神经影像的荟萃分析数据,对受影响的网络进行了功能注释,并进一步分析了ASD个体内结构网络协方差不对称性与症状严重程度、精神科药物使用、智商、年龄、性别及利手性之间的关系。
材料和方法
数据集和被试者
本研究的数据来自ENIGMA-ASD工作组提供的结构T1加权脑MRI数据。经质量控制后,共纳入1455名ASD患者(平均年龄15.65岁,范围2-64岁,1213名男性)和1560名健康对照者(平均年龄16.09岁,范围2-64岁,1179名男性),来自43个独立数据集(表1)。ASD的临床诊断依据DSM-IV标准。599名ASD个体提供了利手性分类信息(551人右利手,48人左利手)。更多参与者和评估细节见补充方法。所有数据集均严格遵守伦理规范,且所有被试均签署了知情同意书。
表1:本研究所用ENIGMA-ASD工作组43个数据集的特征描述。
图像采集与处理
结构MRI成像数据(T1加权)来自ENIGMA-ASD工作组。所有数据集的图像采集后,统一按照国际ENIGMA联盟制定的数据处理及质量控制流程进行处理。利用FreeSurfer软件(版本5.3),根据Desikan–Killiany脑区图谱,提取了每名受试者68个皮质区域(左右半球各34个区域)的平均皮质厚度指标。更多细节参见补充方法。
个体水平结构协方差网络的构建
本研究中,我们根据区域皮质厚度数据,分别为每个受试者独立地构建左右两个半球的结构协方差网络(图1),具体方法参考以往研究。该网络由节点和边组成,每个节点对应一个特定皮质区域(共68个节点)。网络中每个连接节点的边(edge)反映区域间的结构协方差关系。对每个个体而言,分别在左右两个半球构建网络,每个网络有561条边。之后,我们对每个网络应用稀疏性阈值(S=0.4)去除较弱连接,仅保留最强的40%连接(即最强的40%的边),具体为每个个体和每个半球单独确定,以确保所有网络间在进行组间差异比较时具有一致的稀疏程度。此外,我们还进行了不同稀疏性阈值的敏感性分析(见下文)。
图1:本研究的流程示意图
A 本研究的流程图。我们首先利用皮质厚度数据为每个数据集中的每个个体分别构建半球内的个体结构协方差网络,然后使用这些网络计算拓扑指标,比较ASD和对照组之间的拓扑网络不对称性差异。
B 小世界网络模型的示意图。在半球水平上,我们通过“小世界”(small-world)网络参数评估了网络整合与分离的特征。规则网络具有较高的聚类系数和较长的最短路径长度,体现为局部专业化程度高、全局整合程度低;而随机网络具有较低的聚类系数和较短的最短路径长度。
C 节点水平网络指标。对每个半球的34个节点分别计算了四个指标:节点全局效率(nodal global efficiency)和度中心性(degree centrality)反映节点与其他所有节点的全局连接情况;节点的聚类系数和节点局部效率则体现局部网络连接特性。
缩写:ASD 自闭症谱系障碍;HC 健康对照;SD 标准差。
半球水平的网络属性
我们使用Brain Connectivity Toolbox 与GRETNA工具箱计算半球水平的网络特性,包括归一化聚类系数(γ)、归一化最短路径长度(λ)以及小世界指数(σ),具体公式和进一步说明见补充方法。
节点水平的网络属性
对每个半球34个节点,我们分别计算了四种之前被广泛用于比较ASD患者与对照组的拓扑网络指标,包括节点整体效率、聚类系数、节点局部效率和节点全局效率。其中节点的全局效率衡量该节点与其他所有节点连接的效率(具体公式和解释见补充方法)。
半球不对称性
为了量化每个个体不同网络指标的不对称性,我们计算了半球差值(hemispheric difference, HD):
HD=Left−Right
因此,HD的正值表示该指标存在向左半球的偏侧优势,而HD的负值则表示该指标向右半球存在不对称优势。(需要注意的是,广泛使用的不对称指数(AI),通常计算为(左-右)/(左+右),并不适合本研究,因为本研究所用指标的左侧和/或右侧值可能为零,这时经典AI指数可能会出现极端值或未定义的情况。)
统计分析
我们采用线性混合效应随机截距模型(MATLAB 2016a版本中的fitlme
函数(The Mathworks Inc.))对病例与对照之间的差异进行分析,同时对所有数据集进行分析,但针对每个网络指标的HD分别进行建模。所有模型均包含相同的固定效应(诊断类别(病例或对照)、年龄和性别),以及一个随机效应以指示每个个体所属的43个数据集中的哪一个,如下式所示:
上述公式中的随机效应“数据集(dataset)”用于校正各数据集之间存在的所有变量差异,包括扫描仪类型和磁场强度等因素(见表1)。诊断因素所得的t值用于计算病例与对照差异效应的Cohen’s d效应量。通过10,000次标签交换排列检验(label swapping permutation)计算实证p值(参见补充方法)。对于3个半球网络水平指标HD的显著性,我们对病例-对照效应采用Bonferroni校正(显著性阈值为0.05/3)。对于节点水平网络指标HD的病例-对照效应,我们使用针对34个节点的错误发现率(FDR)校正,校正后的显著性阈值为p_FDR < 0.05/4(因为测试了4个节点水平的网络指标)。
拓扑网络不对称性变化的方向
对于在主分析中表现出显著病例-对照差异的HD值,我们分别对相应的左右半球单侧指标进行分析,以进一步了解单侧效应的具体变化方向。为此我们采用了线性混合效应模型。由于这是为更深入地描述病例组特定的不对称性变化而进行的事后分析,因此我们未对这些分析进行多重比较校正。
与ASD严重程度、药物、IQ、年龄、性别和利手性的关联
针对主分析中与病例-对照状态显著相关的每个拓扑网络HD值,我们在仅ASD个体中使用独立的线性混合效应模型,分别探讨这些HD值与自闭症症状严重程度(ADOS总分)、当前精神药物使用、智商(IQ)、年龄、性别或利手性的可能关联。这些分析旨在了解病例内主要临床异质性特征是否与相关的拓扑网络HD值有关。详细模型、每个变量的样本量以及显著性判定方法见补充方法部分。
边级描述性分析
节点的度中心性代表了该节点与整个半球网络中其他节点的连接程度。针对主分析中度中心性HD值存在显著病例-对照差异的三个区域(即梭状回、嘴侧额中回和上额皮质),我们进一步开展了边级描述性分析,以考察病例-对照组之间的关联。我们从每个个体的半球结构协方差网络中(此次分析未进行稀疏化处理和二值化),分别提取了这些“种子”节点连接到其他33个节点的结构连接值(每条边一个值)。针对每一对对应的左右半球边,我们计算HD(即左-右)。使用与主分析相同的线性混合效应随机截距模型,以每条边的HD值作为因变量进行跨个体分析,并再次通过10,000次置换检验来评估诊断效应的双侧实证显著性。对每个相关节点分别进行了FDR校正,校正的p值阈值为0.05,以应对连接到该节点的33条边的多重比较问题。
基于Neurosynth的功能注释
为了提示在度中心性不对称显著改变区域所涉及的潜在认知功能,我们使用了在线平台Neurosynth 。截至2021年2月,该平台整合了超过14,000项人类功能神经影像研究的数据,共包括1307张脑激活元分析地图,每个地图代表与不同认知功能相关的术语。每张地图通过相关论文中的语义词汇来表示特定术语所关联的脑激活模式。庞大的数据库规模使得这种方法可以有效弥补激活模式与特定认知任务或领域不完全精确对应的问题,因此可以为脑区功能的注释提供数据驱动的替代方案,而无需依赖文献中少量论文的选择性引用。
分别针对节点水平分析中显示度中心性不对称性显著改变的每个脑区,以及在边级分析中与这些节点显著相关的脑区,我们将左右半球的对应区域同时标记,生成一个双侧脑区掩膜。然后,我们应用FreeSurfer的“mri_surf2vol”函数将表面空间掩膜转换为标准的MNI152空间体积掩膜。随后,利用这些掩膜作为输入,通过Neurosynth的“decoder”功能确定脑区相关的认知术语。最终,选择与掩膜相关系数>0.2的认知术语,采用词云形式展示,字体大小根据术语与Neurosynth所生成的对应元分析激活图的相关性进行缩放,同时排除解剖术语、非特异术语(如“Tasks”)以及含义高度相似的术语对中的重复项(如“Words”和“Word”)。
敏感性分析
为了评估研究结果对主分析所使用的稀疏化阈值(0.4)的稳健性,我们在一系列稀疏度阈值(从0.25到0.5,步长为0.01)下重复进行了分析,并在此范围内进行了曲线下面积分析(area-under-the-curve,详见补充方法)。因为在0.25–0.5范围之外定义的网络可能会失去连接性或小世界组织特征。
为评估非线性年龄效应对病例-对照组HD差异结果的影响,我们在主分析中增加了一个非线性年龄项((年龄-平均年龄)^2)作为固定效应,重复进行了主分析(详见补充方法)。
为评估个体整体平均皮质厚度是否影响结果,我们再次重复主分析,额外加入了代表个体所有区域平均皮质厚度的固定效应(详见补充方法)。
结果
半球水平网络不对称性
三个半球水平的网络指标HD(归一化聚类系数γ、小世界指数σ、归一化最短路径长度λ)均未显示ASD个体与对照组之间存在显著差异(均p > 0.05)。在ASD组中观察到λ的不对称性存在向左偏移的趋势,但未达到显著水平(Cohen’s d = 0.06, p = 0.10;补充表1)。单侧半球分析显示,ASD与右半球的λ降低存在名义上的关联(Cohen’s d = −0.07, 未校正p = 0.04),但左半球未见此效应(Cohen’s d = 0.004, p = 0.92),提示ASD患者右半球网络的信息传输效率可能略高,并表现出向随机化转移的趋势(补充表2)。
节点水平的网络指标
我们将节点水平网络指标的HD与ASD关联的Cohen’s d效应量映射到全脑皮质表面(图2)。效应量整体较小,范围为−0.15(梭状回节点全局效率HD)至0.14(上额皮质度中心性HD)(补充表3–6)。节点水平的指标中,经FDR校正后有三个区域的度中心性不对称性显著与ASD关联,分别为梭状回(Cohen’s d = −0.14, p < 0.0001)、吻侧中额回(Cohen’s d = −0.13, p = 0.0007)与上额皮质(Cohen’s d = 0.14, p = 0.0003)(图2、补充表3)。另外四个区域的节点全局效率HD也在经多重检验校正后与ASD显著关联,即梭状回(Cohen’s d = −0.15, p = 0.0001)、吻侧中额回(Cohen’s d = −0.13, p = 0.0001)、上额皮质(Cohen’s d = 0.13, p = 0.0007)与内侧眶额皮质(Cohen’s d = −0.11, p = 0.001)(图2、补充表4)。总体而言,在ASD患者中,梭状回、吻侧中额回和内侧眶额皮质的网络指标显示出向左侧偏侧化降低的趋势(补充表3–4)。上额皮质则显示出度中心性和全局效率指标HD的右侧优势减弱(补充表3–4)。节点聚类系数与节点局部效率的HD均未表现出显著的ASD关联(图2、补充表5–6)。
图2:ASD病例-对照组节点水平拓扑不对称性效应量(Cohen’s d)映射。
a 节点水平拓扑指标(反映节点全局连接特征,即度中心性与节点全局效率)的ASD病例-对照组效应量。
b 节点水平拓扑指标(反映节点局部连接特征,即节点聚类系数与节点局部效率)的ASD病例-对照组效应量。
正效应量(粉红色-红色)代表ASD相较对照组向左侧偏侧化增强或右侧偏侧化减弱的方向变化;负效应量(蓝色)代表ASD相较对照组右侧偏侧化增强或左侧偏侧化减弱。
在进一步单侧半球分析中,梭状回和吻侧中额回的度中心性不对称变化、梭状回和内侧眶额皮质的节点全局效率不对称变化,均涉及右半球指标的升高,导致了左侧拓扑不对称性降低(补充表7)。吻侧中额回节点全局效率的不对称性变化在ASD个体中则表现为双侧升高,但右半球升高程度更明显,仍导致相对左侧优势降低。上额皮质的度中心性和节点全局效率的不对称性变化表现为双侧下降,但右半球下降更多,因此导致了右侧优势降低(补充表7)。
节点分析中表现显著差异的4个区域均为先前ENIGMA-ASD研究中单独区域分析发现的7个存在皮质厚度不对称性改变的区域之一,这四个区域主要集中在额叶和梭状回(图3)。
图3:与既往区域逐一检测相比,本研究ASD患者中平均网络水平不对称性变化的区域。
颜色标注见图中说明。关于之前逐区域分析的研究引用请参见正文。
临床严重程度、药物、智商、年龄、性别与利手性
在主分析中显示显著病例-对照差异的7个网络HD指标中(梭状回、吻侧中额皮质和上额皮质的度中心性HD,以及梭状回、吻侧中额皮质、上额皮质和内侧眶额皮质的节点全局效率HD),均未发现与自闭症症状严重程度(ADOS总分[63])的显著关联(所有p值 > 0.05;补充表8)。同样,这些网络HD指标也未发现与当前药物使用存在经FDR校正后的显著关联(补充表9)。但药物状态与梭状回度中心性HD存在名义上的显著关联(Cohen’s d = −0.22,未校正p = 0.04),且与梭状回节点全局效率HD存在一个边缘趋势(Cohen’s d = −0.19, 未校正p = 0.06)。智商(IQ)与这些网络HD指标之间未发现显著关联(补充表10)。年龄仅与内侧眶额皮质的节点全局效率HD表现出显著正相关(t = 2.36,未校正p = 0.006;补充表11)。性别(补充表12)或利手性(补充表13)与网络HD指标之间均未发现显著关联。
描述性的边级分析
每个节点的度中心性提供了节点与其半球其他区域连接的指标。在主分析中度中心性HD与ASD关联显著的三个区域,即梭状回、吻侧中额皮质和上额皮质,我们进一步进行了病例-对照的描述性边级分析。梭状回的四条连接边在经FDR校正后与ASD显著关联,这些边连接到吻侧中额回(Cohen’s d = −0.12, p = 0.0004)、楔叶(Cohen’s d = −0.14, p = 0.0005)、内侧眶额皮质(Cohen’s d = −0.11, p = 0.002)和中央后回(Cohen’s d = −0.13, p = 0.0006;图4A,补充表14)。与对照组相比,这些连接边在ASD中均表现为左侧优势减弱。此外,吻侧中额皮质与顶下皮质(Cohen’s d = −0.13, p = 0.0004)、梭状回(Cohen’s d = −0.12, p = 0.0004)和楔前叶(Cohen’s d = −0.17, p < 0.0001)的连接边在经FDR校正后也与ASD显著关联(图4B,补充表15)。这些边同样表现为在ASD中左侧优势降低。此外,上额皮质与中央旁小叶的连接边也显示与ASD显著关联(Cohen’s d = 0.12, p = 0.001;图4C,补充表16),表现为ASD相较于对照组右侧优势降低。
图4:与ASD中节点度中心性不对称显著改变相关的连接边的不对称变化。
a ASD中梭状回相关连接的不对称变化。
b ASD中吻侧中额皮质相关连接的不对称变化。
c ASD中上额皮质相关连接的不对称变化。
黄色节点代表相应脑区。红色代表在ASD中显著降低的右侧优势连接,蓝色代表ASD中显著降低的左侧优势连接。
在边级分析中发现的9个显示连接不对称性变化的区域中,有4个区域与先前ENIGMA ASD研究中逐区域检测发现的皮质厚度不对称性变化区域相同(图3)。这4个区域也与上述节点水平分析确定的区域一致,主要集中在额叶和梭状回。
功能注释分析:ASD中连接不对称变化网络的功能注释
在三个节点度中心性HD与ASD显著关联的网络中,功能注释共同显示与“工作记忆”(working memory)密切相关(图5和补充表17)。但每个网络也涉及其他额外的认知功能。梭状回连接的不对称性改变涉及执行控制、阅读和运动任务相关的皮质区域(图5A和补充表17);吻侧中额皮质连接的不对称变化涉及执行功能、阅读和注意任务相关区域(图5B和补充表17);上额皮质连接的不对称变化则涉及执行和感觉运动任务相关区域(图5C和补充表17)。
图5:显示连接不对称变化的皮质区域相关的认知功能。
基于元分析的fMRI数据对显示连接不对称变化的区域进行功能注释,包括梭状回(a)、吻侧中额皮质(b)和上额皮质(c)。左侧图示为显示连接不对称变化的区域(输入至Neurosynth);中间图示为对应区域的共激活脑区图谱;右侧以词云方式展示对应的认知术语,字体大小代表其与激活图的相关性强弱(具体相关系数见补充表17)。
敏感性分析
在不同稀疏阈值(0.25-0.5)范围内重复分析发现,上述梭状回、吻侧中额皮质、上额皮质和内侧眶额皮质的度中心性和节点全局效率的不对称性变化与ASD的关联始终显著,说明结果对于稀疏阈值的选择具有稳健性(补充表18)。
在线性混合模型中加入非线性年龄项后,上述7个网络HD指标的病例-对照效应仍然显著且基本未受影响(补充表19)。
在控制全脑平均皮质厚度后,这7个网络HD指标与病例-对照组的关联仍显著(补充表20)。
讨论
ASD中平均结构网络不对称性的改变
我们使用基于皮质整体范围的图论方法,分析了ENIGMA联盟ASD工作组中43个数据集的ASD患者与对照个体之间的拓扑网络不对称性差异。结果发现,ASD个体的结构网络拓扑不对称性存在显著的平均差异,特别涉及梭状回、吻侧中额皮质、上额皮质和内侧眶额皮质区域。这些变化很大程度上(但并非完全)是由ASD患者右半球网络组织更趋于随机化所驱动。边级分析进一步显示,这些节点的连接涉及前额叶、顶叶、后扣带回及中央旁小叶等结构协方差网络。通过元分析fMRI数据驱动的功能注释一致地将工作记忆确定为可能受ASD中网络不对称变化影响的重要功能,这与ASD中普遍存在执行功能障碍的特点相符。
这些网络水平的发现使我们对ASD患者中皮质厚度不对称性广泛而分散的变化拓扑结构有了新的理解,这种变化在先前ENIGMA-ASD研究中采用逐区域单独检测的方式也已有报道。具体而言,在之前的研究中报告的7个显示皮质厚度不对称性异常的区域中,本研究鉴定出4个区域为更广泛网络的节点,这些区域的结构连接不对称性在本研究中也有显著改变。这四个区域尤其集中在额叶与梭状回(图3),表明这些区域可能对ASD的表现尤为重要。而先前单独检测时表现出厚度不对称性改变的扣带回与下颞叶区域,在本次网络拓扑分析中并未发现显著参与不对称性改变网络之中。此外,以额叶和梭状回为节点进行边级分析时,多数连接到顶叶区域的边表现出了显著不对称性改变(图3),而这些顶叶区域在逐区域单独分析时并未表现出厚度不对称性显著改变。因此,ASD患者中广泛而分散的平均皮质厚度不对称性改变,可在具体结构网络的背景下得到进一步理解,包括这些区域如何被整合到存在不对称改变的网络中,以及这些网络对应的特定功能含义(见下文进一步讨论)。
总体而言,许多认知过程在健康人大脑中均表现为一定程度的左右半球优势模式,因此,群体中典型的不对称模式可能是大脑组织的最佳形式。由此推测,网络水平的不对称改变可能会产生相应的功能后果。鉴于ASD是一种起始于儿童期的障碍,而本研究中的大部分个体为儿童,因此这些发现进一步支持了ASD中存在精细的、受干扰的脑不对称发育模式。正如在引言部分提到,宏观解剖尺度上的区域间协方差可能来源于突触对远距离连接的神经元产生的营养和保护作用,或神经元的同步放电可能促进高连接区域的协同突触发生和生长。本研究的网络水平结果亦符合一个假设,即区域间的神经连接可能通过异常的神经信号或神经递质系统失调,在额叶和梭状回等空间分散的皮质区域中传播皮质厚度的不对称异常。因此,半球内拓扑连接可能有助于塑造ASD中皮质病理的空间分布模式。这些结果也提供了可能的解释,即为何ASD患者皮质表面存在非连续的、平均的厚度不对称改变。
本研究中的效应量较小,Cohen’s d范围为−0.15至0.14。这说明ASD群体与对照组在结构网络不对称性方面的群体平均差异非常微妙,与ENIGMA联盟之前对ASD脑区域解剖和不对称性研究报告的效应量相似。未来研究可以采用规范建模或聚类方法,以识别结构网络不对称性显著异常的个体亚群,这些亚群可能构成ASD的病因亚型。基于MRI的区域皮质厚度指标是一种较为粗略的生物学指标,受到多种潜在因素的影响,包括髓鞘化程度,以及不同类型神经元和树突结构的数量和密度等。因此,在宏观尺度观察到的微小网络不对称性改变,有可能在更微观的层面反映出更显著的变化。例如,神经突定向分散和密度成像(NODDI)可用于研究灰质微观结构的不对称性,灰质的T1w/T2w成像比值也可用于估算皮质髓鞘含量。未来对死后皮质组织的组织学及基因表达研究或许也会揭示微观或分子层面的改变,目前的数据有限,因为许多大脑样本库将左、右半球分别用于不同的储存与分析程序。
受影响网络的功能注释
有三个脑区的节点度中心性不对称性与ASD显著关联:梭状回、吻侧中额皮质和上额皮质。利用fMRI数据的功能注释显示,这些脑区参与的网络均与“工作记忆”功能有关(图5,补充表17)。每个网络还额外涉及特定功能:梭状回连接不对称性涉及执行控制、阅读与运动任务的相关脑区;吻侧中额皮质的连接则涉及执行、阅读与注意任务相关区域;而上额皮质连接则涉及执行与感觉运动功能区域。语言延迟是ASD的常见特征,且ASD与语言左半球优势降低相关。大量行为、神经生理、影像和组织病理研究也发现ASD存在非典型的运动系统发育。因此,我们的研究结果表明,特定右半球结构网络的变化可能是ASD语言及运动功能缺陷的神经基础之一。这些基于外部数据的功能注释也为未来开展脑-行为相关研究提供了理论支持。
梭状回尤其在面孔知觉任务中表现为右侧优势激活,而ASD患者在面孔处理的右侧功能偏侧化被发现减弱。吻侧中额皮质(背外侧前额皮质)是认知控制网络的重要枢纽,并在认知控制任务中表现出异常的左半球活跃。上额皮质则是默认模式网络的核心区域之一,亦表现为ASD中异常的功能连接不对称性。本研究进一步在结构水平支持了上额皮质连接不对称的改变。
对于内侧眶额皮质,其节点全局效率的不对称性与ASD显著关联,但度中心性无显著关联,因此未进行后续分析。此前研究已表明该区域在ASD患者中同时表现出皮质厚度与面积的不对称性改变,另有研究提示其结构协方差的改变可能与语言能力有关。
异质性与临床特征
本研究发现网络不对称性变化未与ASD症状严重程度、药物使用、IQ、性别或利手性显著相关,仅年龄对内侧眶额皮质全局效率不对称有部分关联。未来的纵向研究可能有助于明确这些不对称模式的发育轨迹及其与临床表现之间的关系。
异质性与临床特征
在ASD个体内部,我们未发现被检出的网络不对称性指标与自闭症症状严重程度、精神药物使用、智商(IQ)、性别或利手性之间存在显著关联。仅年龄与一个网络指标的不对称性(内侧眶额皮质节点全局效率的HD值)存在关联。除这一单一效应外,本研究无法将结构网络的不对称性与目前可获得的个体内表型变量联系起来。此外,年龄和性别作为协变量在主要病例-对照分析中的效应也总体上不显著(补充表1–6),可能因为这些变量的效应多为双侧性的,对于半球差异的影响有限。可能需要更深入的表型分析,以理解结构连接不对称改变与临床异质性之间的关系。例如,目前联盟中仅有ADOS总分,而未获得代表不同行为维度的亚量表评分;此外,药物使用和共病的数据仅在相对较少的亚群中有所记录(见方法部分)。未来的纵向研究或许能帮助确定ASD中不典型不对称模式的发育轨迹,并捕捉结构不对称改变在疾病过程中因果和动态的变化过程。此外,也可能存在这样一种情形,即结构连接的改变并不会映射到ASD的特定症状领域,而是代表了不同ASD个体间共享的易感机制,甚至可能跨越ASD与其他诊断类别的界限。
局限性
如上文所述,ENIGMA-ASD的数据整体上缺乏一致的深入表型信息,以便更好地理解临床异质性的影响。这是在利用已有数据集进行联合分析时不可避免的问题,因为这些数据最初都是以独立研究形式进行收集和设计的。此外,各数据集中缺乏统一的多模态MRI或纵向数据,这意味着本研究所确定的基于皮质厚度区域不对称的结构网络改变,无法通过这些个体的其他数据类型(例如白质束、功能连接或个体内成熟变化)进一步得到支持。
本研究围绕半球内网络的不对称性展开,并未考虑跨半球连接。这种设计确保了在分析的所有阶段(从整个半球到节点级和边级分析)都能始终如一地使用同一网络定义。如果在网络构建中包括跨半球连接,将只能为全脑计算单一的网络指标(gamma、lambda、sigma),而无法按半球分别计算;而后者是整个半球水平不对称分析的前提条件。在节点水平上,如果同时考虑半球内和跨半球连接,这意味着网络将包含左右半球同源区域之间的连接,这些连接无法体现不对称性,因此会减少节点水平连接测量的不对称性,也会使得对节点(特别是度中心性存在不对称改变的节点)的边级分析和解释变得复杂。因此,仅研究半球内的连接,有助于本研究各分析步骤之间保持连贯性与可比性。未来的研究中,可以考虑专门针对节点水平加入跨半球的连接分析。
本研究集中于四个图论指标,这些指标在以往基于皮质厚度的结构网络研究中已有应用(参见引言和方法部分)。这些指标能够直接描述全局和局部的网络连接状态。更广泛地看,图论提供了大量其他指标以供未来研究探索,尤其是涉及网络模块定义的指标。然而,这可能涉及主观设定阈值的问题,网络模块定义在不同数据集间可能也不够一致,并且会增加多重假设检验的问题。
本研究采用HD(即左-右)来量化拓扑特征的不对称性。与常规使用的不对称指数(AI,例如(左-右)/(左+右))相比,HD未对左右半球测量值的总和或平均值进行校正。这意味着HD的大小部分与左右双侧测量值的大小相关。然而,对于本研究中所用的变量类型而言,HD比AI更为稳健,因为当左右总值很小时,经典AI可能会产生极端值,这些极端值可能掩盖或夸大病例-对照的差异。令人放心的是,当我们在模型中控制每个个体的全脑平均皮质厚度时,仍得到与主分析一致的显著结果。因此,研究结果应被理解为半球不对称性效应,而不是全皮质范围的效应,后者则可能与双侧区域效应相关。
结论
总之,这项联盟研究发现ASD个体与健康对照之间,在半球结构连接网络的不对称性方面存在轻微的群体平均差异。受影响的节点特别集中于额叶和梭状回区域,涉及的网络功能映射最一致地指向了工作记忆这一功能。这些结果帮助我们从半球网络结构的角度更好地理解ASD中皮质厚度不对称性的改变,并提示ASD中一些特定的神经发育相关脑不对称变化可能是通过结构连接进行传播的。
原文:Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium