集合及其运算

一、集合的概念

所谓集合,是指具有某种确定性质的“事物”的全体,可简称为集。将构成集合的一个个“事物”称为“元素”,也可简称为“元”。
有限集:一个集合含有有限多个元素。
单元素集:只含一个元素的集合。
空集:不含任何元素的集合。
无限集:不是有限集的集合称为无线集。
在理解集合概念时,要注意如下三点:
(1)一个集合的元素所具有的性质或满足的条件必须是明确的。
(2)集合中的各元的必须是彼此能够分辨的、互异的,因此,在用列举法表示集合时,其中的元素不能重复出现。
(3)集合中的元的没有先后次序之分。

二、集合的包含关系与子集

设A、B是任意集合
(1)若 ∀ \forall x ∈ \in A ⇒ \Rightarrow ∀ \forall x ∈ \in B,则称A含于B(或B包含A),记为A ⊂ \subset B(或B ⊃ \supset A),并称A是B的子集。
(2)若A ⊂ \subset B,且B ⊃ \supset A,则称A与B相等,记为A=B,否则则记为A ≠ \neq =B。
(3)若A ⊂ \subset B,但A ≠ \neq =B,则称A是B的真子集,记为A ⊊ \subsetneq B。
由定义可知,空集 ∅ \varnothing 是任何集合A的子集,即总有
∅ ⊂ \varnothing\subset A,此外,不难得出集合之间的包含关系“ ⊂ \subset ”具有以下性质:
(1)自反性:A ⊂ \subset A;
(2)传递性:若A ⊂ \subset B,B ⊂ \subset C,则A ⊂ \subset C。
注意:并不是任何集合之间都具有包含关系。

三、集合的交、并、差运算

在研究某个问题时,所涉及的所有集合都是某个集合X的子集,于是我们将X称为基本集合,也可称为全集。

1、定义

定义1.2 设X是基本集合,A,B ⊂ \subset X,
(1)A与B的交:A ∩ \cap B ≡ \equiv {x|x ∈ \in A且x ∈ \in B},即由A与B的公共元素构成的集合。
(2)A与B的并:A ∪ \cup B ≡ \equiv {x|x ∈ \in A或x ∈ \in B},即由A与B的所有元素构成的集合。
(3)A与B的差:A\B ≡ \equiv {x|x ∈ \in A且x ∉ \notin /B},即由属于A而不属于B的元素构成的集合,也可记为A-B;称差X\A为集合A的余集或补集,记为A c ^c c

2、性质

(1)A ∩ \cap B ⊂ \subset A,A ∩ \cap B ⊂ \subset B,A ⊂ \subset A ∪ \cup B,B ⊂ \subset A ∪ \cup B,A\B ⊂ \subset A,A\B ∉ \notin /B;
(2)A ∩ ∅ \cap\varnothing = ∅ \varnothing ,A ∪ ∅ \cup\varnothing =A,A ∩ \cap X=A,A ∪ \cup X=X;
(3)A ∩ \cap A c ^c c= ∅ \varnothing ,A ∪ \cup A c ^c c=X,,(A C ^C C C ^C C=A,X c ^c c= ∅ \varnothing ∅ c \varnothing^c c=X;
(4)A ⊂ \subset B<=>A C ⊃ ^C\supset CB C ^C C;
(5)A\B=A ∩ \cap B C ^C C;
(6)当A ∩ \cap B= ∅ \varnothing (即A与B不相交)时,A ⊂ \subset B C ^C C,B ⊂ \subset A C ^C C

3、定理

设X是基本集合,A,B,C ⊂ \subset X,则有
(1)幂等律:A ∩ \cap A=A,A ∪ \cup A=A;
(2)交换律:A ∩ \cap B=B ∩ \cap A,A ∪ \cup B=B ∪ \cup A;
(3)结合律:(A ∩ \cap B) ∩ \cap C=A ∩ \cap (B ∩ \cap C),(A ∪ \cup B) ∪ \cup C=A ∪ \cup (B ∪ \cup C);
(4)分配律:A ∩ \cap (B ∪ \cup C)=(A ∩ \cap B) ∪ \cup (A ∩ \cap C),A ∪ \cup (B ∩ \cap C)=(A ∪ \cup B) ∩ \cap (A ∪ \cup C);
(5)对偶律:(A ∩ \cap B) c ^c c=A c ∪ ^c\cup cB c ^c c,(A ∪ \cup B) c ^c c=A c ∩ ^c\cap cB c ^c c;

四、集合的直积

1、定义

设A,B是任意集合,由所有有序对(a,b)构成的集合{(a,b)|a ∈ \in A,b ∈ \in B}称为A与B的直积,或笛卡尔乘积,记为A × \times ×B,并将A与B分别称为A × \times ×B的第一坐标集和第二坐标集。

2、性质

值积有如下性质:
(1)不满足交换律,即一般地A × \times ×B ≠ \neq =B × \times ×A;
(2)满足结合律,即A × \times ×(B × \times ×C)= (A × \times ×B) × \times ×C
(3)A × ∅ \times\varnothing ×= ∅ \varnothing ∅ × \varnothing\times ×A= ∅ \varnothing .

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值