01 用两个栈模拟一个队列
用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/yong-liang-ge-zhan-shi-xian-dui-lie-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
栈是先进后出,队列是先进先出
用两个栈来模拟队列的核心思想就是一个栈作为入栈,一个作为出栈,将入栈内的数据先倒出到出栈中,这样一个反复就可以做到先进先出。
class CQueue {
stack<int> stack_in;
stack<int> stack_out;
public:
CQueue() {
while(!stack_in.empty())
{
stack_in.pop(); //清空进栈
}
while(!stack_out.empty())
{
stack_out.pop();//清空入栈
}
}
void appendTail(int value) {
stack_in.push(value); //在进栈中直接插入元素
}
int deleteHead() {
if(stack_out.empty()) //如果出栈是空,从进栈中加入元素
{
if(stack_in.empty()) //如果进栈也是空表明栈内没有元素 返回-1
{
return -1;
}
while(!stack_in.empty()) //如果进栈不为空,将进栈中的元素都加入出栈中
{
stack_out.push(stack_in.top());
stack_in.pop();
}
int out = stack_out.top();
stack_out.pop();
return out;
}
else
{
int out = stack_out.top();
stack_out.pop();
return out;
}
}
};
02 包含min函数的栈
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。
解题思路
方法一:建立两个栈,一个栈负责正常的push,pop,另外一个栈负责存储非严格递减的输入数据
当正常栈pop出的元素等于非非严格递减栈的栈顶元素时,非严格递减栈也pop栈顶元素
class MinStack {
private:
stack<int> stkNormal;
stack<int> stkMin;
public:
//方法一:建立两个栈,一个栈负责正常的push,pop,另外一个栈负责存储非严格递减的输入数据
// 当正常栈pop出的元素等于非非严格递减栈的栈顶元素时,非严格递减栈也pop栈顶元素
/** initialize your data structure here. */
MinStack() {
}
//加入新元素的时候判断是否是最小元素
void push(int x) {
if(stkMin.empty())
{
stkMin.push(x);
stkNormal.push(x);
}
else
{
if(x <= stkMin.top())
{
stkMin.push(x);
}
stkNormal.push(x);
}
}
// pop的时候看看是不是最小元素
void pop() {
if(stkNormal.top() == stkMin.top())
{
stkNormal.pop();
stkMin.pop();
}
else
{
stkNormal.pop();
}
}
int top() {
return stkNormal.top();
}
int min() {
return stkMin.top();
}
};
/**
* Your MinStack object will be instantiated and called as such:
* MinStack* obj = new MinStack();
* obj->push(x);
* obj->pop();
* int param_3 = obj->top();
* int param_4 = obj->min();
*/
03 栈的压入、弹出序列
解题思路用一个栈来模拟进栈操作
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
if (popped.size() == 0)
{
return true;
}
stack<int> pushStack;
pushStack.push(pushed[0]);
int j = 0;
for (int i = 0; i < popped.size(); i++)
{
while (pushStack.top() != popped[i])
{
j++;
//超出边界等于失败
if (j >= pushed.size())
{
return false;
}
pushStack.push(pushed[j]);
}
//栈为空表示失败
if (pushStack.empty())
{
return false;
}
pushStack.pop();
//栈为空补充元素
if (pushStack.empty() & (i < popped.size()-1))
{
j++;
//超出边界等于失败
if (j >= pushed.size())
{
return false;
}
pushStack.push(pushed[j]);
}
}
return true;
}
};
队列的最大值
解题思路 用空间换时间
class MaxQueue {
private:
queue<int> myQue;
deque<int> recordMax;
public:
MaxQueue() {
}
int max_value() {
if (recordMax.empty())
return -1;
return recordMax.front();
}
void push_back(int value) {
myQue.push(value);
while ((!recordMax.empty()) && (value > recordMax.back()))
{
recordMax.pop_back();
}
recordMax.push_back(value);
}
int pop_front() {
if (myQue.empty()) return -1;
if (myQue.front() == recordMax.front())
{
recordMax.pop_front();
}
int temp = myQue.front();
myQue.pop();
return temp;
}
};