leetcode :动态规划

01 剪绳子

在这里插入图片描述
解法一数学推导:数学推导,分析数字1到5,可以得到当数子是3及以下是不分解,5及以上时分解,只能将数字分解为3和(4或者2)

 int cuttingRope(int n) {

        //初始条件判断
        if(n == 2)
        return 1;
        if(n == 3)
        return 2;

        //数学推导划分
        int left = n %3;
        int num = n/3;

        int res = 1;
        while(num > 0)
        {
            res *= 3;
            num --;
        }

        //余数判断
        if(left == 2)
        {
            res *= 2;
        }
        else if(left == 1)
        {
            res = res*4/3;
        }
        return res;
    }

解法2动态规划

int cuttingRope(int n) {

        //初始条件判断
        if (n == 2)
            return 1;
        if (n == 3)
            return 2;

        //动态规划
        vector<int> maxDp;
        maxDp.push_back(1);
        maxDp.push_back(1);
        maxDp.push_back(1);
        maxDp.push_back(2);

        for (int j = 4; j < (n+1); j++)
        {
            int max = maxDp[j - 1];
            for (int i = 1; i < j; i++)
            {
                if ((i * maxDp[j - i]) > max)
                {
                    max = i * maxDp[j - i];
                }
                if ((i * (j-i)) > max)
                {
                    max = i * (j-i);
                }
            }
            maxDp.push_back(max);
        }
        return maxDp.back();
    }

02 滑动窗口的最大值

在这里插入图片描述
解题思路 用一个优先队列记录之前滑过的元素
在这里插入图片描述

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        
        vector<int> res;
        deque<int> record;


        for (int i = 0; i < nums.size(); i++)
        {
            //从后往前清理比当前元素小的记录
            while ((! record.empty() )&&(nums[i] > record.back()))
            {
                record.pop_back();
            }

            //从前往后清理当前退出的元素
            if (((i-k) >= 0 ) && (!record.empty()) &&(nums[i-k] == record.front()))
            {
                record.pop_front();
            }

            record.push_back(nums[i]);
            
            if ((i+1 - k) >= 0)
            {
                res.push_back(record[0]);
            }
        }
        return res;
        
    }
};

03 圆圈中最后剩下的数字

在这里插入图片描述
解题思路 这是一个约瑟夫环问题
在这里插入图片描述

class Solution {
public:
    int lastRemaining(int n, int m) {
        int x = 0;
        for (int i = 2; i <= n; i++) {
            x = (x + m) % i;
        }
        return x;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值