狗都能看懂的SR3(Image Super-Resolution via Iterative Refinement)论文详解

本文介绍了使用DiffusionModel(DDPM)改进的超分辨率方法SR3,通过迭代细化在生成过程中加入低分辨率图像,提高模型的定向生成能力。尽管训练稳定且能应用于去噪、去雾等领域,但论文主要贡献在于展示了一种新的思路而非仅限于超分辨率性能提升。
摘要由CSDN通过智能技术生成

Image Super Resolution

在超分辨率重建技术的发展中,GAN(生成对抗网络)已经成为一种流行的解决方案。通过利用深度学习的能力,GAN能够从大量的图像数据中学习如何将低分辨率的图片转换成高清晰度版本。这种方法的核心在于两个相互竞争的网络:一个生成器负责生成图片,另一个判别器负责判断图片的真实性。两者之间的对抗过程推动生成器不断提升生成图像的质量。然而,GAN在实践中仍存在一些局限性,比如在处理更复杂场景和细节时可能出现的不稳定性,以及对训练数据过度依赖等问题。

今天要介绍的超分方法是基于Diffusion Model去做的,相比于GAN网络,思路非常新颖,训练过程也更稳定。

DDPM

DDPM
关于DDPM还不清楚的同学,可以看一下上一篇博客

DDPM也是生成式网络,由于它只需要从无序的噪声中预测出每次要减去的噪声,所以只需要训练一个网络。相比于GAN来说,训练更稳定,但缺点就是计算量比较大,要生成越精细的图片,所需要的时间步越多。但这也是DDPM的一个缺点,从无序的噪声中预测多余的噪声,也就意味着,它只能预测见过噪声。换句话说,它极度依赖数据集,没办法生成数据集之外的图像。而这种Diffusion Model是unconditional的。

那如果我们在每次reverse的过程给model添加一些额外的信息,是否能控制生成的方向呢?SR3就在超分领域做了一些尝试。

Image Super-Resolution via Iterative Refinement

SR3

SR3(Image Super-Resolution via Iterative Refinement)也即是论文名字的缩写。SR3在每次扩散的时候,给每个 x t x_t xt添加一个低分辨率的图片,让model有一个明确的生成方向,从而使得最终生成 x 0 x_0 x0是一张清晰的图像。

这里添加的低分辨率图片,在论文中是以concat的方式去融合的。作者也给出了一些不同分辨率下的网络结构。这里要说明一下,在实际实现中,concat的这个"低分辨率"图实际上是和最终的"高分辨率"图是一样分辨率的(shape是一致的)。通常是将低分辨率图直接用线性插值resize到和目标分辨率一样大,这个也比较好理解,不同分辨率是没办法在一个尺度下进行扩散的。
structure
具体的数学公式其实和DDPM差不多,就是把 f θ ( x ) f_\theta(x) fθ(x)多加了一个参数,其他都和DDPM一样,这里就不展开推导了。

改进点

  1. 将低分辨率图融合到 x t x_t xt中,作为条件变量控制网络的生成方向。
  2. 相比DDPM,每个 t t t时刻下的 α t ‾ \sqrt{\overline{\alpha_t}} αt 不再是一个固定的值,而是在 [ α t − 1 ‾ , α t ‾ ] [\sqrt{\overline{\alpha_{t-1}}}, \sqrt{\overline{\alpha_t}}] [αt1 ,αt ]的范围内随机采样一个点。
  3. 不再把 t t t作为参数输入给UNet了,而是直接将噪声强度的权重作为参数输入。

总结

SR3是第一个用Diffusion Model做超分的方法,由于没有用PSNR那些指标作为损失函数,所以指标上会显得比较低,但从论文的其他实验和实际的生成结果看,效果都是很好的。但换个思路,抛开这些不谈,我认为其最主要的贡献不在于超分,而是提供了一个思路。让Diffusion Model能用于更多去除图像多余信息的领域(去马赛克,图像去雾,修复等)。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值