逻辑回归(二):Loss易导

回顾

书接上回,讲到了逻辑回归的Loss函数的一般形式,大体如下:
L ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) = 1 m ∑ i = 1 m [ − y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] h θ ( x ) = g ( θ T X ) g ( z ) = 1 1 + e − z L(\theta) = \frac{1}{m}\sum_{i=1}^mCost(h_\theta(x^{(i)}),y^{(i)}) \\=\frac{1}{m}\sum_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)}))-(1-y^{(i)})log(1-h_\theta(x^{(i)}))] \\h_{\theta}(x) = g(\theta^TX)\\ g(z) = \frac{1}{1+e^{-z}} L(θ)=m1i=1mCost(hθ(x(i)),y(i))=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]hθ(x)=g(θTX)g(z)=1+ez1

梯度下降

已经有了Loss函数,那么我们要做的事情就是通过梯度下降的方法来确定最佳参数 θ \theta θ,使得对于训练集的所有数据,Loss函数值最小。那么我们就来对这看似复杂的函数进行一下求导吧。

对Loss函数求偏导

我们知道函数有以下形式:
L ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] L(\theta) = \frac{1}{m}\sum_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)}))-(1-y^{(i)})log(1-h_\theta(x^{(i)}))] L(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
1 m \frac{1}{m} m1是常数,我们可以先放至一边。括号里面的 y ( i ) y^{(i)} y(i) ( 1 − y ( i ) ) (1-y^{(i)}) (1y(i))都是常数,对导数的形式并无影响。Loss函数对 θ \theta θ求偏导有以下形式:
∂ L ( θ ) ∂ θ j = 1 m ∑ i = 1 m [ − y ( i ) ∂ l o g ( h θ ( x ( i ) ) ) ∂ θ j − ( 1 − y ( i ) ) ∂ l o g ( 1 − h θ ( x ( i ) ) ) ∂ θ j ] \frac{\partial L(\theta)}{\partial \theta_j}=\frac{1}{m}\sum_{i=1}^m[-y^{(i)}\frac{\partial log(h_\theta(x^{(i)}))}{\partial \theta_j}-(1-y^{(i)})\frac{\partial log(1-h_\theta(x^{(i)}))}{\partial \theta_j}] θjL(θ)=m

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值