前言
欢迎大家积极在评论区留言发表自己的看法,知无不言,言无不尽,养成每天刷题的习惯,也可以自己发布优质的解题报告,供社区一同鉴赏,吸引一波自己的核心粉丝。
今天是五月集训第二十天:平衡二叉树🔥🔥🔥
一、练习题目
700. 二叉搜索树中的搜索
230. 二叉搜索树中第K小的元素
108. 将有序数组转换为二叉搜索树
1382. 将二叉搜索树变平衡
二、算法思路
- 1、700. 二叉搜索树中的搜索:利用BST的特性类似二分查找,如果
val < root->val
递归去找左子树,val > root->val
递归去找右子树。 - 2、230. 二叉搜索树中第K小的元素:利用BST中序遍历后是一个有序递增的特性,不断减少k,如果k减到0了就说明找到了。
值得注意的是,如果使用函数传参k的时候需要注意值传递和引用传递,或者定义一个全局变量。
- 3、108. 将有序数组转换为二叉搜索树:找数组的中点,它的左边构成左子树,右边构成右子树。
- 4、1382. 将二叉搜索树变平衡:先中序遍历二叉搜索树返回有序数组,再利用第三题的函数接口,因为第三题是一个左子树一个右子树去生成,肯定是保证平衡的。
三、源码剖析
// 700. 二叉搜索树中的搜索
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if(root == nullptr)
return root;
if(val < root->val)
return searchBST(root->left, val);
else if(val > root->val)
return searchBST(root->right, val);
return root;
}
};
- 1、类似二分的作法。
// 230. 二叉搜索树中第K小的元素
class Solution {
int ans = -1;
public:
void dfs(TreeNode* root, int &k) { //(1)
if(root == nullptr)
return;
dfs(root->left, k);
if( --k == 0){
ans = root->val; //(2)
}
dfs(root->right, k);
}
int kthSmallest(TreeNode* root, int k) {
dfs(root, k);
return ans;
}
};
- 1、函数传参的话要用引用传递,不然的话值传递只是拷贝,不会对k本身有影响,会错;
- 2、k变到0说明我们找到了。
// 108. 将有序数组转换为二叉搜索树
class Solution {
public:
TreeNode* dfs(vector<int>& nums, int l, int r) {
if(l > r)
return nullptr;
int mid = (l + r) >> 1;
TreeNode* n = new TreeNode(nums[mid]); //(1)
n->left = dfs(nums, l, mid-1); //(2)
n->right = dfs(nums, mid+1, r); //(3)
return n;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
int l = 0, r = nums.size() - 1;
return dfs(nums, l, r);
}
};
- 1、找中点作为根结点;
- 2、根节点左边去递归构成左子树;
- 3、根节点右边去递归构成右子树。
// 1382. 将二叉搜索树变平衡
class Solution {
vector<TreeNode*> ret;
public:
TreeNode* dfs(vector<TreeNode*>& nums, int l, int r) {
if(l > r)
return nullptr;
int mid = (l + r) >> 1;
TreeNode* n = nums[mid];
n->left = dfs(nums, l, mid-1);
n->right = dfs(nums, mid+1, r);
return n;
}
TreeNode* sortedArrayToBST(vector<TreeNode*>& nums) {
int l = 0, r = nums.size() - 1;
return dfs(nums, l, r);
}
void inorder(TreeNode* root) { //(1)
if(root) {
inorder(root->left);
ret.push_back(root);
inorder(root->right);
}
}
TreeNode* balanceBST(TreeNode* root) {
ret.clear();
inorder(root);
return sortedArrayToBST(ret); //(2)
}
};
- 1、中序遍历形成一个升序数组;
- 2、利用第三题的接口即可。