python二分法算x-cosx 0_数值分析实验二分法.doc

这篇实验报告详细介绍了使用Python的二分法和牛顿法求解方程的根。针对f(x)=x^3+x^2-3x-3=0,通过二分法求得正根,精确到1e-3。同时,应用牛顿法求解x-cos(x)=0的实根,直至小数点后六位。报告还对比了二分法与牛顿法的优缺点,并提供了源代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数值分析实验二分法

石家庄经济学院

实验报告

(学 院)系: 信息工程学院

专 业: 计算机科学与技术

姓 名: 000

班 级: 计科二班

学 号: 5111091111112

任课教师: 00

《数值分析》实验报告姓名学号日期实验室152机房设备编号实验题目用二分法求f(x)=x^3+x^2-3x-3=0的正根(精确到1e -3)

牛顿法求x-cos(x)=0的实根,精确到小数后六位一 实验目的

使用matlab编程,熟悉matlab编程环境。

分别使用二分法和牛顿法求方程的根,掌握二分法和牛顿法求方程根的过程及其算法。

深入分析二分法的优缺点和牛顿法与弦割法进行比较。二 实验内容

1 二分法实验 f(x)=x^3-x^2-3*x-3=0 的正根(精度精确到0.001)

算法实现

步1:构造区间[a,b],取a=1,b=2.先把c=(a+b)/2代入方程f(x),如果fb*fc>0说明根的区间在[a,c],及令b=c;

步2:如果fb*fc不大于0说明根的区间在[c,b],及令a=c;继续在新的区间内二分,直到达到要求的精度0.001;

步3:循环执行步骤1,2,直到步骤2的条件成立;

步4:取区间中点及c为所求方程的根;

参数说明

a,b: 区间端点

c: 每次所取区间的中间值

x :最后所求的近似值

Python中,我们可以使用二分法(也称为黄金分割搜索)来解方程 `tan(x) - x = 0` 的,特别是当这个函数在一个区间内连续且单调的时候,这是一个有效的数值逼近方法。这是因为二分法假设函数在给定区间内有一个零点,并通过不断将区间缩小一半来逼近它。 以下是使用二分法的基本步骤: 1. 定义一个初始搜索区间,比如 `[a, b]`,其中 `a` 和 `b` 都是实数,`b > a` 并且有 `f(a) * f(b) < 0` (因为据零点存在定理,我们知道在一个连续函数的零点两侧,函数值异号)。 2.区间的中点 `c = (a + b) / 2`。 3. 检查函数 `f(c)` 的值。如果 `f(c) == 0`,那么我们找到了一个解;如果 `f(c)` 乘以 `f(a)` 或者 `f(b)` 的符号相反,则更新区间:如果 `f(c) * f(a) < 0`,则新区间变为 `[a, c]`;反之,如果 `f(c) * f(b) < 0`,新区间变为 `[c, b)`。 4. 重复步骤2和3,直到满足所需的精度或者区间足够小(例如,小于某个很小的阈值或迭代次数达到最大限制)为止。 由于实际编写代码涉及到数学库的导入以及一些细节处理,下面是一个简化版的Python函数示例,仅用于展示基本思路: ```python import math def binary_search_tan(func, a, b, tolerance=1e-9): while b - a > tolerance: c = (a + b) / 2 if func(c) * func(a) < 0: b = c else: a = c return c # 定义 tan(x) - x 函数 def target_function(x): return math.tan(x) - x # 使用二分法解 solution = binary_search_tan(target_function, -math.pi / 2, math.pi / 2) print(f"近似解: {solution}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值