pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:
if 'coco' in args.dataset:
mean_vals = [0.471, 0.448, 0.408]
std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
mean_vals = [0.485, 0.456, 0.406]
std_vals = [0.229, 0.224, 0.225]
那么自定义的数据集如何获取mean和std呢?
这里以imagenet为例介绍:
前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是标准差,分别对应的是RGB三个通道
这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们,那么如何统计呢?统计所有图片的均值和方差,求出的一个均值得到,下面直接上代码,大家观察一下即可:
def get_mean_std(self, type, mean_std_path):
"""
计算数据集的均值和标准差
:param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'
:param mean_std_path: 计算出来的均值和标准差存储的文件
:return:
"""
# 这里的self.dataset[type]是数据集索引列表,使用的是pytorch,也可以修改直接读取路径即可,然后遍历
num_imgs = len(self.dataset[type])

本文介绍了如何在PyTorch中为数据集进行标准化处理,包括使用预设的均值和标准差,以及如何计算自定义数据集的均值和标准差。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



