pytorch图片数据归一化,通常传入transforms.Normalize(mean,std,inplace=False)中的mean和std是如何获取的?

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
    mean_vals = [0.471, 0.448, 0.408]
    std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
    mean_vals = [0.485, 0.456, 0.406]
    std_vals = [0.229, 0.224, 0.225]

那么自定义的数据集如何获取mean和std呢?

这里以imagenet为例介绍:

前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是标准差,分别对应的是RGB三个通道

这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们,那么如何统计呢?统计所有图片的均值和方差,求出的一个均值得到,下面直接上代码,大家观察一下即可:

def get_mean_std(self, type, mean_std_path):
        """
        计算数据集的均值和标准差
        :param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'
        :param mean_std_path: 计算出来的均值和标准差存储的文件
        :return: 
        """
        # 这里的self.dataset[type]是数据集索引列表,使用的是pytorch,也可以修改直接读取路径即可,然后遍历
        num_imgs = len(self.dataset[type])
        for data in self.dataset[type]:
            img = data[0]
            for i in range(3):
                # 一个通道的均值和标准差
                self.means[i] += img[i, :, :].mean()
                self.stdevs[i] += img[i, :, :].std()


        self.means = np.asarray(self.means) / num_imgs
        self.stdevs = np.asarray(self.stdevs) / num_imgs

        print("{} : normMean = {}".format(type, self.means))
        print("{} : normstdevs = {}".format(type, self.stdevs))
        
        # 将得到的均值和标准差写到文件中,之后就能够从中读取
        with open(mean_std_path, 'wb') as f:
            pickle.dump(self.means, f)
            pickle.dump(self.stdevs, f)
            print('pickle done')

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值