pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:
if 'coco' in args.dataset:
mean_vals = [0.471, 0.448, 0.408]
std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
mean_vals = [0.485, 0.456, 0.406]
std_vals = [0.229, 0.224, 0.225]
那么自定义的数据集如何获取mean和std呢?
这里以imagenet为例介绍:
前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是标准差,分别对应的是RGB三个通道
这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们,那么如何统计呢?统计所有图片的均值和方差,求出的一个均值得到,下面直接上代码,大家观察一下即可:
def get_mean_std(self, type, mean_std_path):
"""
计算数据集的均值和标准差
:param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'
:param mean_std_path: 计算出来的均值和标准差存储的文件
:return:
"""
# 这里的self.dataset[type]是数据集索引列表,使用的是pytorch,也可以修改直接读取路径即可,然后遍历
num_imgs = len(self.dataset[type])
for data in self.dataset[type]:
img = data[0]
for i in range(3):
# 一个通道的均值和标准差
self.means[i] += img[i, :, :].mean()
self.stdevs[i] += img[i, :, :].std()
self.means = np.asarray(self.means) / num_imgs
self.stdevs = np.asarray(self.stdevs) / num_imgs
print("{} : normMean = {}".format(type, self.means))
print("{} : normstdevs = {}".format(type, self.stdevs))
# 将得到的均值和标准差写到文件中,之后就能够从中读取
with open(mean_std_path, 'wb') as f:
pickle.dump(self.means, f)
pickle.dump(self.stdevs, f)
print('pickle done')