半圆阴影_圆中阴影部分面积求法的常用方法

378e4584cf7740815b264e5bf7d9d6fa.gif

圆中阴影部分面积求法的常用方法

50d6cfd0d9f792047d9049c903d5eeef.png

一、利用规则图形的和差求面积:

例题1、如图、在边长为 4 的正方形ABCD中,先以点 A 为圆心,AD 的长为半径画弧,在以 AB 的中点为圆心,AB 长的一半为半径画弧,则阴影部分面积是多少?(结果保留 π)

3d50bf194b394f35e8995a98d3cea2a3.png

图(1)

解:

59d39706433f20b3dcfabbac4582ed63.png

图(2)

Sa + Sb = S扇形ABCD ;

Sb = S扇形ABCD - Sa = 1/4 π × 4 × 4 - 1/2 π × 2 × 2 = 2π 。

例题2、如图、矩形ABCD的边长BC为3 cm,宽 AB 为 2 cm, 点 E、F 是边 AD 的三等分点,点 G、H 是边 BC 的三等分点。现分别以 B、G 两点为圆心,以 2 cm 长为半径画弧 AH 和弧 EC ,则图中阴影部分的面积为多少平方厘米?

29bd7a1916ca8e0061f5d243c2ff860a.png

图(3)

解:∵四边形ABCD是矩形,点 E、F是边AD的三等分点,点 G、H是边AD的三等分点 ,BC = 3 cm,

∴ AE = EF = BG = GH = 1 cm ,S扇形ABH = S扇形EGC ,四边形ABGE是矩形。

∴S阴影 = S矩形ABGE + S扇形EGC - S扇形ABH = S矩形ABGE = 2×1 = 2 (cm^2 )。

例题3、如图 C 为半圆内一点,O 为圆心,直径 AB 长为 2 cm , ∠BOC= 60°, ∠BCO = 90°,将△BOC绕圆心O逆时针旋转至△B'0C' ,点 C' 在OA 上,则边 BC 扫过区域(图中阴影部分)的面积是多少?

b0200a98c23fa089a4c9aa8342ff5a9b.png

图(4)

解:

7b9d4a7aa13e84dd0c156c49a1e954f8.png

图(5)

二、割补法:

例题4、如图、在扇形AOB中,∠AOB= 90°,正方形CDEF 的顶点 C 是AiB弧 的中点,点 D 在OB 上,点 E 在OB的延长线上,当正方形 CDEF 的边长为 2√2 时,则图中阴影部分的面积是多少?(结果保留 π)

d0984c7e0e1f029075871a85a6f42081.png

图(6)

解:

1bf4b2e052356f3871f8be019ae73122.png

图(7)

三、等积法:

1、轴对称等积法:

例题5、如图、小方格都是边长为 1 的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”图形(阴影部分)部分的面积是多少?(结果保留 π)

3520b300a5cabec9b0531c21c70b65ab.png

图(8)

解:

0d87fd9a6301dba7cb692b117db881f5.png

图(9)

如图,连接AB,则阴影部分的面积为 :2 (S扇形AOB - S△AOB)= 2π - 4 。

2、旋转等积法:

例题6、如图、以AB为直径,点O 为圆心的半圆经过点C,若 AC = BC = √2 ,则图中阴影部分的面积是多少?(结果保留 π)。

25e0956529e77ee3a3897a502033e130.png

图(10)

解:

73568205fe659f8bd571073cefce3913.png

图(11)

3、同底等高的三角形等积替换:

例题7、如图、AB是半圆 O 的直径,点 C 、D 是半圆 O 的三等分点,若 旋 CD = 2 ,则图中阴影部分的面积为多少?(结果保留 π)。

884f457090a2d3258e6ca88d6c5bb4e1.png

图(12)

解:

1416e31c72f2aad4334dcfb820259e59.png

图(13)

四、折叠问题中求阴影部分图形的面积:

例题8、如图、半径为 1 的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点 M 与 圆心 O 重合,则图中阴影部分的面积是多少?(结果保留 π)。

8309efb2e898dcb1c82737ea60b996a3.png

图(14)

解:

72e05759fc60df611357bf29cd78845f.png

图(15)

15f69c9550a9902c119e9c80c6a8b23b.png

图(16)

汉字字库存储芯片扩展实验 # 汉字字库存储芯片扩展实验 ## 实验目的 1. 了解汉字字库的存储原理和结构 2. 掌握存储芯片扩展技术 3. 学习如何通过硬件扩展实现大容量汉字字库存储 ## 实验原理 ### 汉字字库存储基础 - 汉字通常采用点阵方式存储(如16×16、24×24、32×32点阵) - 每个汉字需要占用32字节(16×16)到128字节(32×32)不等的存储空间 - 国标GB2312-80包含6763个汉字,需要较大存储容量 ### 存储芯片扩展方法 1. **位扩展**:增加数据总线宽度 2. **字扩展**:增加存储单元数量 3. **混合扩展**:同时进行位扩展和字扩展 ## 实验设备 - 单片机开发板(如STC89C52) - 存储芯片(如27C256、29C040等) - 逻辑门电路芯片(如74HC138、74HC373等) - 示波器、万用表等测试设备 - 连接线若干 ## 实验步骤 ### 1. 单芯片汉字存储实验 1. 连接27C256 EPROM芯片到单片机系统 2. 将16×16点阵汉字字库写入芯片 3. 编写程序读取并显示汉字 ### 2. 存储芯片字扩展实验 1. 使用地址译码器(如74HC138)扩展多片27C256 2. 将完整GB2312字库分布到各芯片中 3. 编写程序实现跨芯片汉字读取 ### 3. 存储芯片位扩展实验 1. 连接两片27C256实现16位数据总线扩展 2. 优化字库存储结构,提高读取速度 3. 测试并比较扩展前后的性能差异 ## 实验代码示例(单片机部分) ```c #include <reg52.h> #include <intrins.h> // 定义存储芯片控制引脚 sbit CE = P2^7; // 片选 sbit OE = P2^6; // 输出使能 sbit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值