矩形卷积&非对称卷积核,卷积后特征图尺寸计算

本文介绍了矩形卷积和非对称卷积核在卷积神经网络中如何影响输出特征图的尺寸。通过公式详细阐述了不同参数如步幅、Padding和空洞值对特征图尺寸计算的影响,适用于计算机视觉和深度学习领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩形卷积和非对称卷积核,卷积后的特征图尺寸计算其实原理是一样的。

矩形卷积

如果输入图像是正方形,尺寸为WxW,卷积核尺寸为FxF,步幅为S,Padding使用P,经过该卷积层后输出的特征图尺寸为NxN:

 

 如果输入图像是矩形,尺寸为WxH,卷积核的尺寸为FxF,步幅为S,图像深度(通道数)为C,Padding使用P,则:

              

 非对称卷积核卷积:

此处只例举输入图像是正方形的情况。设输入图像尺寸为WxW,卷积核尺寸为ExF,步幅为S,Padding为P,卷积后的特征图尺寸为:

            

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值