矩形卷积&非对称卷积核,卷积后特征图尺寸计算

本文介绍了矩形卷积和非对称卷积核在卷积神经网络中如何影响输出特征图的尺寸。通过公式详细阐述了不同参数如步幅、Padding和空洞值对特征图尺寸计算的影响,适用于计算机视觉和深度学习领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩形卷积和非对称卷积核,卷积后的特征图尺寸计算其实原理是一样的。

矩形卷积

如果输入图像是正方形,尺寸为WxW,卷积核尺寸为FxF,步幅为S,Padding使用P,经过该卷积层后输出的特征图尺寸为NxN:

 

 如果输入图像是矩形,尺寸为WxH,卷积核的尺寸为FxF,步幅为S,图像深度(通道数)为C,Padding使用P,则:

              

 非对称卷积核卷积:

此处只例举输入图像是正方形的情况。设输入图像尺寸为WxW,卷积核尺寸为ExF,步幅为S,Padding为P,卷积后的特征图尺寸为:

            

<think>好的,用户想了解非对称卷积的原理及其图形表示。首先我需要回忆一下非对称卷积的基本概念。非对称卷积(Asymmetric Convolution)是卷积神经网络中的一种技术,通常用于增强模型的特征提取能力而不增加过多的参数。根据引用[4],ACNet将非对称卷积用于图像超分,效果不错。 首先,非对称卷积的工作原理。常规的卷积核是正方形的,比如3x3,而非对称卷积可能分解成1x3和3x1的连续卷积。这样做的好处是保持相同感受野的同时减少参数数量,或者通过组合不同方向的卷积来捕捉更丰富的特征。例如,先进行1x3的垂直卷积,再进行3x1的水平卷积,整体效果类似3x3卷积,但参数更少,并且可能引入更多的非线性。 然后需要考虑示意图的问题。根据引用[3],单通道卷积是元素相乘累加。非对称卷积的示意图应该显示分解后的卷积步骤。比如,一个3x3的卷积分解为1x3和3x1的组合,或者非对称结构如1x5和5x1的组合。需要明确分步展示每个卷积核的作用方向。 可能用户需要知道为什么非对称卷积有效。根据引用[4],非对称卷积可以与现有结构如LESRCNN结合,提升性能。这可能是因为非对称结构在训练时增加了网络的学习能力,同时在推理时可以通过结构重参数化将多个卷积合并,不增加计算量。 需要确保回答中正确引用,比如引用[4]提到的ACNet应用。另外,用户可能需要示意图的LaTeX表示,但用户要求的是图形表示,可能需要描述示意图的结构,用文字代替图像,比如用符号和箭头表示卷积方向。 最后,生成相关问题时要围绕非对称卷积的应用、优势、与传统卷积的区别等方面提问。例如,优化方法、与其他技术的结合、实际应用场景等。 总结回答的结构:先解释原理,再描述示意图,引用相关文献,最后生成相关问题。确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并检查语法正确性。</think>### 非对称卷积的原理及示意图 #### 1. 工作原理 非对称卷积(Asymmetric Convolution)通过将传统正方形卷积核分解为多个方向不同的矩形卷积核组合,增强模型的特征提取能力。例如,一个$3 \times 3$的卷积可以拆分为$1 \times 3$和$3 \times 1$的连续卷积操作[^4]。这种分解方式在保持相似感受野的同时,具有以下优势: - **参数更少**:两个矩形卷积核的参数总量为$1 \times 3 + 3 \times 1 = 6$,而原$3 \times 3$卷积核参数为$9$,减少了约33%的参数量。 - **方向性特征提取**:$1 \times 3$卷积侧重捕捉垂直方向的特征,$3 \times 1$卷积侧重水平方向,组合后能更灵活地建模局部结构。 #### 2. 示意图描述 以$3 \times 3$卷积分解为例: 1. **第一步(垂直卷积)**:使用$1 \times 3$卷积核输入特征图进行垂直方向扫描,公式为: $$y_{ij} = \sum_{k=-1}^{1} x_{i,j+k} \cdot w_{k+1}$$ 其中$w$为卷积核权重,$x$为输入像素值。 2. **第二步(水平卷积)**:对第一步的输出应用$3 \times 1$卷积核进行水平方向扫描,公式为: $$z_{ij} = \sum_{k=-1}^{1} y_{i+k,j} \cdot v_{k+1}$$ 最终结果$z_{ij}$等效于原$3 \times 3$卷积的输出,但通过分解引入了更多非线性。 #### 3. 实际应用 在ACNet中,非对称卷积被用于图像超分辨率任务,与残差网络结合后可提升高频细节的恢复能力。训练时使用分解的卷积核,推理时可通过参数融合将其合并为单个$3 \times 3$卷积,避免计算量增加。 --- ### 示意图的LaTeX表示 ```latex % 垂直卷积(1×3) 输入矩阵:$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ 卷积核:$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$ % 水平卷积(3×1) 中间结果:$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$ 卷积核:$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值