Win系统使用DINO训练自己数据集

本文档详细介绍了如何在Windows系统中使用DINO训练自定义数据集。首先,需在项目主目录建立coco文件夹并调整main.py的'--coco_path'参数。数据集分为train2017和val2017,用以训练和验证,同时提供了修改配置文件的建议,如将num_classes设置为类别数加一,以及调整dn_labelbook_size。在训练过程中可能会遇到错误,例如编译问题,可通过运行python setup.py install或修改slconfig.py来解决。
摘要由CSDN通过智能技术生成

数据集

在工程主目录下创建一个coco文件夹,并修改main.py文件中的‘--coco_path’。

数据集目录:

train2017用来训练,val2017用来验证。

test2017是为了训练得到模型之后,测试模型泛化性能的,有没有都可以。

annotations中包含train2017和val2017分别对应图像的目标标签:

 配置文件修改

 cinfig/DINO中的四个py文件(除了coco_transformer.py)用于完成训练or验证等任务。如果想要从头训练自己的数据集,可以选择任一一个进行修改。

①num_classes改为自己数据集的类别数量+1(因为包含背景)

②dn_labelbook_size ,官方说dn_labebook_size >= num_classes + 1

其余参数自己看着调优。

错误及解决办法

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值