数据集
在工程主目录下创建一个coco文件夹,并修改main.py文件中的‘--coco_path’。
数据集目录:
train2017用来训练,val2017用来验证。
test2017是为了训练得到模型之后,测试模型泛化性能的,有没有都可以。
annotations中包含train2017和val2017分别对应图像的目标标签:
配置文件修改
cinfig/DINO中的四个py文件(除了coco_transformer.py)用于完成训练or验证等任务。如果想要从头训练自己的数据集,可以选择任一一个进行修改。
①num_classes改为自己数据集的类别数量+1(因为包含背景)
②dn_labelbook_size ,官方说dn_labebook_size >= num_classes + 1
其余参数自己看着调优。
错误及解决办法
①