yaml文件
模型深度&宽度
nc: 3 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
depth_multiple:控制子模块数量=int(number*depth)
width_multiple:控制卷积核的数量=int(number*width)
Anchor
anchors:
- [10,13, 16,30, 33,23] # P3/8,检测小目标,10,13是一组尺寸,总共三组检测小目标
- [30,61, 62,45, 59,119] # P4/16,检测中目标,共三组
- [116,90, 156,198, 373,326] # P5/32,检测大目标,共三组
该anchor尺寸是为输入图像640×640分辨率预设的,实现了即可以在小特征图(feature map)上检测大目标,也可以在大特征图上检测小目标。三种尺寸的特征图,每个特征图上的格子有三个尺寸的anchor。
Backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, C3, [256]],
[-1, 1, Conv,

本文详细解析了YOLOv5的yaml配置文件,包括模型的深度、宽度、Anchor、Backbone和Head等部分。在Anchor部分,介绍了预设尺寸的目的是为了在不同特征图上检测不同大小的目标。Backbone部分阐述了模块结构和参数,如Focus、Conv和BottleNeckCSP。Head部分则讨论了包含Neck和Detect_head的结构。此外,还概述了YOLOv5的初始化和训练超参数,包括数据配置、网络结构、预训练模型加载和训练批次大小等。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



