图卷积网络到底怎么做 —— 小试牛刀

GCN 是一类非常强大的用于图数据的神经网络架构。事实上,它非常强大,即使是随机初始化的两层 GCN 也可以生成图网络中节点的有用特征表征。下图展示了这种两层 GCN 生成的每个节点的二维表征。请注意,即使没有经过任何训练,这些二维表征也能够保存图中节点的相对邻近性。

更形式化地说,图卷积网络(GCN)是一个对图数据进行操作的神经网络。给定图 G = (V, E),GCN 的输入为:

 

  • 一个输入维度为 N × F⁰ 的特征矩阵 X,其中 N 是图网络中的节点数而 F⁰ 是每个节点的输入特征数。

  • 一个图结构的维度为 N × N 的矩阵表征,例如图 G 的邻接矩阵 A。[1]

 

因此,GCN 中的隐藏层可以写作 Hⁱ = f(Hⁱ⁻¹, A))。其中,H⁰ = X,f 是一种传播规则 [1]。每一个隐藏层 Hⁱ 都对应一个维度为 N × Fⁱ 的特征矩阵,该矩阵中的每一行都是某个节点的特征表征。在每一层中,GCN 会使用传播规则 f 将这些信息聚合起来,从而形成下一层的特征。这样一来,在每个连续的层中特征就会变得越来越抽象。在该框架下,GCN 的各种变体只不过是在传播规则 f 的选择上有所不同 。

 

传播规则的简单示例

 

下面,本文将给出一个最简单的传播规则示例 [1]:

 

f(Hⁱ, A) = σ(AHⁱWⁱ)

 

其中,Wⁱ 是第 i 层的权重矩阵,σ 是非线性激活函数(如 ReLU 函数)。权重矩阵的维度为 Fⁱ × Fⁱ⁺¹,即权重矩阵第二个维度的大小决定了下一层的特征数。如果你对卷积神经网络很熟悉,那么你会发现由于这些权重在图中的节点间共享,该操作与卷积核滤波操作类似。

 

简化

 

接下来我们在最简单的层次上研究传播规则。令:

 

  • i = 1,(约束条件 f 是作用于输入特征矩阵的函数)

  • σ 为恒等函数

  • 选择权重(约束条件: AH⁰W⁰ =AXW⁰ = AX)

 

换言之,f(X, A) = AX。该传播规则可能过于简单,本文后面会补充缺失的部分。此外,AX 等价于多层感知机的输入层。

 

简单的图示例

 

我们将使用下面的图作为简单的示例:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值