
点击上方蓝字关注我们


【二次函数系列专题】
二次函数图象与系数关系一题多问


一、中考解读
二次函数图像与系数的关系在中考中属于高频考点,通常出现在选择题第11题或第12题,作为压轴题出现,难度适中.
考点:主要考查二次函数图像性质、二次函数与一元二次方程的关系以及根与系数的关系、二次函数与不等式之间的关系.

二、解题策略
解题策略:1. 判断a、b、c的符号,abc的符号.
a的符号的判断根据开口方向:
开口方向向上a>0,
开口方向向下a<0.
b的符号根据对称轴的位置:
当对称轴在y轴左侧b和a的符号相同,
当对称轴在y轴右侧b和a的符号相反.
简称“左同右异”
c的符号根据图像与y轴的交点:
图像与y轴正半轴相交c>0,
图像与y轴负半轴相交c<0.
5.求与x轴另一交点
解题策略:已知一交点,利用两交点关于对称轴对称,求另一交点.
6.已知x比较y的大小关系
解题策略:在对称轴同一侧可根据增减性判断
在对称轴两侧可根据距离对称轴的远近判断


三、典例精讲



问题拓展:

四、问题解答
已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线x=1,y2= -2x+6其部分图象如图所示,判断下列说法是否正确:
问题拓展:


五、方法总结
学好函数,需要数形结合,利用函数图象就能够清晰地分析函数的性质.而函数图象受函数关系中待定常数的影响,想要分析函数图象,就得讨论函数关系式中常数对函数图象的影响.
一.a的作用
a决定开口方向与开口大小影响抛物线的开口方向和开口大小,
1.a>0,开口向上,a<0,开口向下;
2.∣a∣越大,开口越小,∣a∣越小,开口越大;
二.c的作用
c决定抛物线与y轴交点的位置
当x=0,y=c,抛物线与y轴交于(0,c),c决定抛物线与y轴交点的位置。
1.c>0,与y轴交于正半轴;
2.c=0过原点;
3.c<0,与y轴交于负半轴。
三、a,b共同影响对称轴对称轴x=-b/2a,
a,b的值决定了对称轴,也决定了对称轴的位置,
1. 当a,b同号时,对称轴在y轴左边;
2. 当a,b异号时,对称轴在y轴右边。
3. 这个性质可简记为“同左异右”,也可记为“左同右异”。
四.其它a,b,c组合
1.二次函数y=ax²+bx+c当y=0时对应的一元二次方程ax²+bx+c=0当b²-4ac>0时有两个不相等的实数根,即抛物线与x轴有两个交点;
2.当b²-4ac=0时抛物线与x轴只有一个交点;
3.当b²-4ac<0时抛物线与x轴没有交点.
五.常用结论
1.a+b+c表示x=1时的函数值;
2.a-b+c表示x=-1时的函数值;
3.4a+2b+c表示x=2时的函数值;
4.9a+3b+c表示x=3时的函数值.


