图象关于y轴对称是什么意思_函数的奇偶性及其拓展(单双函数轴对称与中心对称)知识总结...

6d4cd78c770a4c0f6f4fc77257927fba.gif

一、对函数奇偶性的认识

我们在研究函数的性质时,本质上就是在观察,当自变量进行某些变化时引起了所对应的函数值之间的什么变化或关系,然后运用自然语言及图像将上述关系说清楚,并且用符号语言进行表达。

比如,我们研究过的函数性质列表如下:

406e62c2e1b32d4d9bb12496d379eac3.png

       其中的“奇偶性”就是在研究当自变量之间的关系是互为相反数(也可以说两个自变量的和为0)时,

79d805c1a8a008c43efd42449f780a21.png

        所对应的两个函数值的关系,并且分别从“数”与“形”两方面进行了描述。

7556cbd72ea51208c1a3fdfbb6599fe6.png

92e45b9c3f9477bbe937feb0111c38a9.png

【点评】利用奇偶性实现转化

3dc0763b9814ca45056d54e61a712938.png

c3ae7dadf2cc4a8b10446141cccefe15.png

1ca597aa3eab327d21bb78bb3d3e57ca.png

72edccb8250d7eee10aecbcda47d6958.png

二、奇偶性的拓展

(一)轴对称

1cccbc21debb0714abd225594294175b.png

e6ff9a3231f93033d49b932e8596d01a.png

560fa0c00a347d2ae506908cad8242a8.png

9e47be4c7b33ce53229146173750b413.png

(二)中心对称

554c9c0b4dc9e99ebb4377f992e9a7fc.png

1d230f7ec37a235b8490f623cd1b79ee.png

39cab45a6086db617ccfc4365f84ef16.png

1f42c2238a8653e07449348a94cdfa27.png

326f156b9da6b7b0502f98bc4060bd02.png

注意:这是涉及到两个函数之间的对称关性,与前面研究和探讨的都是一个函数自身的对称性

          是不同的。这不是我们本节课的内容,感兴趣的同学可以自己研究。

910cce6f2ae05161b3e4b754f6066299.png

【小结】

从“数”、“形”两方面把握函数的对称性。

留言留下邮箱即可获得Word文档

点图片有惊喜哈!↓↓

1c525cda4f5ed46525ba2c838e19b385.png

推荐阅读

平面几何在解析几何中的应用

高三二轮复习之三次函数的图象和性质PPT

解析几何之椭圆专题基础知识

函数f (x)=Asin(ωx+φ)中的求值及范围问题

推荐高中数学&班级管理优质公众号,欢迎关注!

8afed815121a1ed43516bceb24f7270f.png

1206d7c4660e880d2b263935582a7ca4.png

e54946a8a91f59e769a93d8d77c6401a.gif 阅读原文 精彩分享

74d8c3d93941a8b350f5eb3400ddee88.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值