3x3矩阵怎么求逆矩阵_表象变换的幺正算符怎么定义的? 为何说算符与态可以看作矩阵?...

2bed2709d62fa420e39ea6e0b8a769e9.png

为了方便计算,量子力学常常进行表象的转换. 而表象的转换也十分简单, 只要插入封闭性关系式[1]即可达到目的. 运算过程中我们会发现可以抽象出一个重复率很高的部分, 所以方便起见我们将其定义为基的变换矩阵, 它是一个幺正矩阵.


下面定义两组三维离散完备正交基(不难推广到连续无穷维, 三维离散是出于直观化[2]考虑. ):

equation?tex=%5C%5B%5Cleft%5C%7B+%5Cbegin%7Balign%7D+++%26+%5Cleft%5C%7B+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5C+%5C+%5C+%5C+%5C+%5Csum%5Climits_%7Bi%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle++%7B%7Be%7D_%7Bi%7D%7D+%5Cright%7C%7D%3DI%5C+%5C+%5C+%5C+%5C+%5C+i%3D1%2C2%2C3+%5C%5C+++%26+%5Cleft%5C%7B+%5Cleft%7C+%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5C+%5C+%5C+%5C+%5Csum%5Climits_%7Bk%7D%7B%5Cleft%7C+%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%7C%7D%3DI%5C+%5C+%5C+%5C+%5C+k%3D1%2C2%2C3+%5C%5C++%5Cend%7Balign%7D+%5Cright.%5C%5D

首先要清楚一点: 狄拉克符号"

equation?tex=%5C%5B%5Cleft%7C+Dirac+%5Cright%5Crangle+%5C%5D " 表示的是一个矢量, 但他仅仅只是表示一个抽象的矢量概念的符号罢了. 所表示的矢量本身就像空间中的一个箭头, 它有大小有取向, 大小还好说, 这模长量一下就好了这样就可以用一个数表示, 这是个数不会因观察角度不同而改变; 但如果你想描述它的取向的话首先你要先设立一个坐标系
[3],这样才能表达方向, 然后你才能在所定义的方向上看这个矢量的分量是多少(具体方法是与表征该方向的单位矢量 [4]做内积), 这样一来, 各个方向上的分量也可以用一个数表示. 这样一来才能用一个列矩阵来表示一个矢量. 所以, 表象的选择其实就是坐标系的选择. 差不多一个意思地, 想用方阵来表示一个算符, 那你也要先选定一个表象(坐标系).

上面那段话举个例子就是这样:

equation?tex=%5C%5B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%3D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%5Csum%5Climits_%7Bi%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%5Cpsi++%5Cright%5Crangle+%7D%3D%5Csum%5Climits_%7Bi%7D%7B%5Cleft%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%5Cpsi++%5Cright%5Crangle+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%7D%5C%5D

其中

equation?tex=%5C%5B%5Cleft%5Clangle++%7B%7Be%7D_%7Bi%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+%5C%5D 是个复数表示分量;
equation?tex=%5C%5B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5C%5D 是基矢, 像单位一样.

所以各个分量单位不同自然不能加在一起而要分开写, 即可以写成列矩阵

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

所谓表象的变换就是想从

equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D变成
equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D, 或者反过来变.

其实也简单, 就像一开始说的那样, 插入一个封闭性关系式即可达到目的.

equation?tex=%5C%5B%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+%3D%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%7C%5Csum%5Climits_%7Bi%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle++%7B%7Be%7D_%7Bi%7D%7D+%5Cright%7C%7D%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%3D%5Csum%5Climits_%7Bi%7D%7B%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle++%7B%7Be%7D_%7Bi%7D%7D+%7C+%5Cpsi++%5Cright%5Crangle+%7D%5C%5D

可以得到

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%3D%5Csum%5Climits_%7Bk%7D%7B%5Cleft%5Clangle+%7B%7Bu%7D_%7Bk%7D%7D%7C%5Cpsi++%5Cright%5Crangle+%5Cleft%7C+%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%5Crangle+%7D%3D%5Csum%5Climits_%7Bki%7D%7B%5Cleft%5Clangle+%7B%7Bu%7D_%7Bk%7D%7D%7C%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%5Cpsi++%5Cright%5Crangle+%5Cleft%7C+%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%5Crangle+%7D%5C%5D

写成矩阵形式

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

上面方阵定义为表象的变换矩阵, 记作

equation?tex=S

不难看出

equation?tex=S 的矩阵元就是
equation?tex=%5C%5B%7B%7BS%7D_%7Bki%7D%7D%3D%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5C%5D

所以假如分别记

equation?tex=%5C%5B%5Cleft%5C%7B+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5Cleft%5C%7B+%5Cleft%7C+%7B%7Bu%7D_%7Bk%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5C%5D 表象下的
equation?tex=%5C%5B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%5C%5D
equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%2C%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D 的话,

则有:

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%3DS%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%5C%5D ,其中
equation?tex=%5C%5B%7B%7BS%7D_%7Bki%7D%7D%3D%5Cleft%5Clangle++%7B%7Bu%7D_%7Bk%7D%7D+%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5C%5D
equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%3DS%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%5CRightarrow+%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D
[5]

实际上逻辑上来说

equation?tex=%5C%5B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%2C%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%2C%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D 实际上是一回事, 毕竟坐标系不会改变什么本质的东西.

一个不怎么贴切的说法是它们三个就好比是某全裸角色和他的两个时装版本.


在上文的基础上讲讲算符的表象转换:

equation?tex=%5C%5BA%3D%5Csum%5Climits_%7Bi%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%7DA%5Csum%5Climits_%7Bj%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%7D%3D%5Csum%5Climits_%7Bij%7D%7B%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%7D%5C%5D

其中

equation?tex=%5C%5B%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5C%5D 是个复数表示分量, 称作矩阵元, 记作
equation?tex=%5C%5B%7B%7BA%7D_%7Bij%7D%7D%5C%5D .

equation?tex=%5C%5B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%5C%5D 是一个基矩阵, 像个单位一样, 表示
equation?tex=%5C%5B%7B%7BA%7D_%7Bij%7D%7D%5C%5D 该放在哪个位置.

#一般不会这样写, 但这样写也有够直观的.

比如说假如

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++0++%5C%5C++++1++%5C%5C++++0++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C+%5C+%5C+%7B%7B%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++1++%5C%5C++++0++%5C%5C++++0++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

那么

equation?tex=%5C%5B%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle+%7B%7B%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7C%7D_%7Be%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++0++%5C%5C++++1++%5C%5C++++0++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+1%2C0%2C0+%5Cright%5D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++0+%26+0+%26+0++%5C%5C++++1+%26+0+%26+0++%5C%5C++++0+%26+0+%26+0++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D 就说明了这个矩阵元要放在第二行第一列.

当然了,上面的矩阵是在

equation?tex=%5C%5B%5Cleft%5C%7B+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5C%5D 表象下写出来的

所以呢

equation?tex=%5C%5B%7B%7BA%7D_%7Be%7D%7D%3D%5Csum%5Climits_%7Bij%7D%7B%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

所谓表象变换就是:

想从

equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

变成
equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D

其实也简单, 就像一开始说的那样, 插入两个封闭性关系式即可达到目的.

equation?tex=%5C%5B%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7Bn%7D%7D+%5Cright%5Crangle+%3D%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7C%5Csum%5Climits_%7Bi%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%7DA%5Csum%5Climits_%7Bj%7D%7B%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%7D%5Cleft%7C+%7B%7Bu%7D_%7Bn%7D%7D+%5Cright%5Crangle+%3D%5Csum%5Climits_%7Bij%7D%7B%5Cleft%5Clangle++%7B%7Bu%7D_%7Bm%7D%7D+%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle++%7B%7Be%7D_%7Bj%7D%7D+%7C+%7B%7Bu%7D_%7Bn%7D%7D+%5Cright%5Crangle+%7D%5C%5D

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3D%5Csum%5Climits_%7Bmn%7D%7B%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7Bn%7D%7D+%5Cright%5Crangle+%5Cleft%7C+%7B%7Bu%7D_%7Bm%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Bu%7D_%7Bn%7D%7D%7C%7D%3D%5Csum%5Climits_%7Bijmn%7D%7B%5Cleft%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7C%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7Bj%7D%7D+%5Cright%5Crangle+%5Cleft%5Clangle+%7B%7Be%7D_%7Bj%7D%7D%7C%7B%7Bu%7D_%7Bn%7D%7D+%5Cright%5Crangle+%5Cleft%7C+%7B%7Bu%7D_%7Bm%7D%7D+%5Cright%5Crangle+%5Clangle+%7B%7Bu%7D_%7Bn%7D%7D%7C%7D%5C%5D

写成矩阵形式

equation?tex=%5C%5B%5Cbegin%7Balign%7D+++%26+%5C+%5C+%5C+%5C+%5C+%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D+%5C%5C+++%26+%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D+%5C%5C++%5Cend%7Balign%7D%5C%5D

上面第二行最左边方阵定义为表象的变换矩阵, 记作

equation?tex=S .

不难看出

equation?tex=S 的矩阵元就是
equation?tex=%5C%5B%7B%7BS%7D_%7Bmi%7D%7D%3D%5Cleft%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7C%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5C%5D, 且最右边的是
equation?tex=%5C%5B%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5C%5D.

所以假如分别记

equation?tex=%5C%5B%5Cleft%5C%7B+%5Cleft%7C+%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5Cleft%5C%7B+%5Cleft%7C+%7B%7Bu%7D_%7Bm%7D%7D+%5Cright%5Crangle++%5Cright%5C%7D%5C%5D 表象下的
equation?tex=A
equation?tex=%5C%5B%7B%7BA%7D_%7Be%7D%7D%2C%7B%7BA%7D_%7Bu%7D%7D%5C%5D 的话,

则有:

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3DS%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5C%5D, 其中
equation?tex=%5C%5B%7B%7BS%7D_%7Bmi%7D%7D%3D%5Cleft%5Clangle+%7B%7Bu%7D_%7Bm%7D%7D%7C%7B%7Be%7D_%7Bi%7D%7D+%5Cright%5Crangle+%5C%5D
equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3DS%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5CRightarrow+%7B%7BA%7D_%7Be%7D%7D%3D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%7B%7BA%7D_%7Bu%7D%7DS%5C%5D , 其中
equation?tex=%5C%5B%7B%7B%5Cleft%28+%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D+%5Cright%29%7D_%7Bim%7D%7D%3D%5Cleft%5Clangle+%7B%7Be%7D_%7Bi%7D%7D%7C%7B%7Bu%7D_%7Bm%7D%7D+%5Cright%5Crangle+%5C%5D

#所以事实上

equation?tex=%5C%5BS%2C%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5C%5D 的位置都是相对的,不用过于在意.

#Still,

equation?tex=%5C%5BA%2C%7B%7BA%7D_%7Be%7D%7D%2C%7B%7BA%7D_%7Bu%7D%7D%5C%5D 物理上来说是一回事, 也有地方说他们是互为幺正等价算符.

显然幺正等价厄米算符均有全同的谱(本征值).

#这个操作常用于把表象转换为算符自身的表象,这样可以得到一个对角阵.


关于算符幺正变换

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3DS%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5C%5D 的幺正阵究竟是怎么拼出来的这点一直有人问到.

所以这里讲一个直观的理解方法:

前面我们得到了表达式

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3DS%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D%5E%7B%5Cdagger+%7D%7D%5C%5D 的矩阵式子

equation?tex=%5C%5B%5Cbegin%7Balign%7D+++%26+%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Bu%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D+%5C%5C+++%26+%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B1%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B2%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle++%7B%7Be%7D_%7B3%7D%7D+%5Cright%7CA%5Cleft%7C+%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D+%5C%5C++%5Cend%7Balign%7D%5C%5D

那么, 我们该如何记住其中的

矩阵

equation?tex=S
equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%7B%7Be%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D 而非
equation?tex=%5C%5B%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C%5Cend%7Bmatrix%7D+%5Cright%5D%5C%5D 呢?

也就是说这俩互为厄米共轭的矩阵哪个摆在左边哪个摆在右边呢?

很简单, 知道式子

equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Be%7D%7D%3D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B1%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B2%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B1%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B2%7D%7D+%5Cright%5Crangle++%26+%5Cleft%5Clangle+%7B%7Be%7D_%7B3%7D%7D%7C%7B%7Bu%7D_%7B3%7D%7D+%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%5Cleft%5B+%5Cbegin%7Bmatrix%7D++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B1%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B2%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C++++%5Cleft%5Clangle+%7B%7Bu%7D_%7B3%7D%7D%7C%5Cpsi++%5Cright%5Crangle+++%5C%5C+%5Cend%7Bmatrix%7D+%5Cright%5D%3D%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D即可.

上面的这个式子意思是这个矩阵可以把

equation?tex=u 表象的
equation?tex=%5C%5B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%5C%5D 转换到
equation?tex=e 表象, 我们记作
equation?tex=%5C%5B%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%5C%5D .

那么前面的表达式其实可以更加显然的写作

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3D%7B%7BS%7D_%7Be%5Cto+u%7D%7D%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%5C%5D .
Q: 那么我们对算符进行幺正变换是想解决什么问题呢?
A: 当我们在
equation?tex=u 表象下工作时, 突然想对矢量
equation?tex=%5C%5B%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D 进行一个线性变换
equation?tex=A , 但是我们出于某些不知名的原因并不知道
equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%5C%5D 的形式, 而只知道这个操作在
equation?tex=e 表象下的形式
equation?tex=%5C%5B%7B%7BA%7D_%7Be%7D%7D%5C%5D .

现在我们只知道

equation?tex=%5C%5B%7B%7BA%7D_%7Be%7D%7D%5C%5D 的形式, 那我们就这么做:
先把矢量变到
equation?tex=e空间:
equation?tex=%5C%5B%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%5C%5D

➡再对结果进行线性变换
equation?tex=%5C%5B%7B%7BA%7D_%7Be%7D%7D%5Cleft%28+%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D+%5Cright%29%5C%5D

➡再把
equation?tex=e空间的结果变回来:
equation?tex=%5C%5B%7B%7BS%7D_%7Be%5Cto+u%7D%7D%5Cleft%5B+%7B%7BA%7D_%7Be%7D%7D%5Cleft%28+%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D+%5Cright%29+%5Cright%5D%5C%5D

这一顿操作等价于在

equation?tex=u 空间进行操作
equation?tex=A 即:
equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D%3D%7B%7BS%7D_%7Be%5Cto+u%7D%7D%5Cleft%5B+%7B%7BA%7D_%7Be%7D%7D%5Cleft%28+%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%7B%7B%5Cleft%7C+%5Cpsi++%5Cright%5Crangle+%7D_%7Bu%7D%7D+%5Cright%29+%5Cright%5D%5C%5D

所以我们把这一大块封装好当作一整个工具就有了:

equation?tex=%5C%5B%7B%7BA%7D_%7Bu%7D%7D%3D%7B%7BS%7D_%7Be%5Cto+u%7D%7D%7B%7BA%7D_%7Be%7D%7D%7B%7BS%7D_%7Bu%5Cto+e%7D%7D%5C%5D

这是否让人对相似矩阵的意义有了更深的理解?
equation?tex=%5C%5BA%3D%7B%7BP%7D%5E%7B-1%7D%7DBP%5C%5D 则称
equation?tex=A%2C+B 互为相似矩阵.

相似矩阵的概念更广义一点, 因为
equation?tex=%5C%5BP%5C%5D 只要求是有逆的线性变换而不要求是幺正变换.

参考

  1. ^也称基的完备性关系式
  2. ^也就是说出于人道主义(笑
  3. ^或者说选择一个坐标系吧
  4. ^一般就是基矢量
  5. ^用到了幺正性, 不难证明其具有这个性质
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值