矩阵快速幂【3*3的矩阵,可以类比成N*N的矩阵】

遇到类似斐波那契数列且为大数取模的问题,可以用矩阵的快速幂来做,举个例子:

这样的一道题就可以用矩阵快速幂来进行运算,我们不难知道,于是可以列写矩阵方程。

首先,用个结构体来存矩阵

struct node
{
    ll a[5][5];
};

然后,用个子函数处理矩阵乘积取模的情况。

node node_mul(node e1, node e2, ll mod)     //矩阵乘法运算、左乘;外加取模
{
    node ff;        //return的东西
    memset(ff.a, 0, sizeof(ff.a));
    for(int i=1; i<=3; i++)
    {
        for(int j=1; j<=3; j++)
        {
            for(int k=1; k<=3; k++)
            {
                ff.a[i][j]+=e1.a[i][k]*e2.a[k][j];
                ff.a[i][j]%=mod;
            }
        }
    }
    return ff;
}

最后就是矩阵的快速幂

node fast_mi(node e1, ll k, ll mod)
{
    node ff;
    memset(ff.a, 0, sizeof(ff.a));
    for(int i=1; i<=3; i++) ff.a[i][i]=1;
    while(k)
    {
        if(k&1)
        {
            ff=node_mul(ff, e1, mod);
        }
        e1=node_mul(e1, e1, mod);
        k>>=1;
    }
    return ff;
}

类比一下快速幂:

ll mi(ll x, ll y, ll mod)       //快速幂
{
    ll res=1;
    x%=mod;
    while(y)
    {
        if(y&1)
        {
            res=res*x%mod;
        }
        x=x*x%mod;
        y>>=1;
    }
    return res;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值