摘要部分
本文提出了一种基于注意力的卷积递归神经网络(ACRNN),从脑电信号中提取更多的区别特征,提高情感识别的准确性。
(1)首先,建议ACRNN采用通道式注意力机制自适应分配不同通道的权重,并采用CNN提取编码的EEG信号的空间信息。
(2)然后,为了挖掘脑电信号的时间信息,将扩展的自注意力引入到RNN中,根据脑电信号的内在相似性对脑电信号的重要性进行编码。
(3)作者在两个数据集上进行实验证明了所提出的算法的优越性(DEAP,DREAMER),在DEAP数据集效价(valence)与唤醒(Arousal)平均准确率可达92.74%和93.14%。在DREAMER数据集上的准确率可达97.79%,97.98%。
2.实验部分
图1:网络实验的整体概述
2.1所提出的方法:
目前,大多数基于脑电信号的情绪识别研究都是先提取相关特征,然后利用提取的特征对被试的情绪状态进行分类。在实际应用中,原始脑电信号包含丰富的空间和时间信息,可以提取这些信息来识别主体的情绪状态。所提出的ACRNN是一种数据驱动的方法,它同时将通道注意力机制和扩展的自注意力机制集成到CNN-RNN中。此外,ACRNN可以提取空间和时间信息作为情感特征,并使用softmax函数对提取的特征进行分类。因此,这种端到端的技术(也就是输入给网络的是原始数据,由网络对原始数据进行特征提取)提高了基于EEG的情感识别的准确性。
首先,我们将EEG样本分为训练样本和测试样本。然后,分别通过去除基线信号对训练样本和测试样本进行预处理。此外,使用切片窗口技术对标签进行预处理。接下来,我们使用训练样本来训练所提出的ACRNN模型,计算交叉熵损失并使用Adam优化器更新网络参数。最后,利用训练好的模型对测试样本的情绪状态进行识别,以分类准确率作为最终的识别结果。
基于注意力的卷积递归神经网络的结构图
结果:
在本文中作者使用tensorflow框架实现的,然后我按照作者的方法又用pytorch框架进行了复现,结果与作者的结果一致。
class ACRNN(nn.Module):
def __init__(self,input_height):
super(ACRNN,self).__init__()
self.H = 1
self.W = 128
self.reduce = 15
self.channel_wise_attention = channel_wise_attention(self.H,self.W,self.C,self.reduce)
self.output_channel = 40
self.kernel_height = 32
self.kernel_width = 40
self.kernel_stride = 1
self.pooling_height = 1
self.cnn = CNN(self.H,self.C,self.W,self.kernel_height,self.kernel_width,self.kernel_stride,self.pooling_height,self.pooling_width,self.pooling_stride,self.output_channel)
self.hidden_dim = 64
self.lstm = LSTM(self.hidden_dim)
self.hidden = 512
self.self_attention = self_attention(self.hidden_dim,self.hidden)
self.num_labels = 2
self.softmax = nn.Sequential(
nn.Linear(self.hidden_dim,self.num_labels),
nn.Softmax(dim=1)
)
def forward(self,x):
x_map, x_ca = self.channel_wise_attention(x)
x_cn = self.cnn(x_ca)
x_rn, x_c = self.lstm(x_cn)
x_sa = self.self_attention(x_rn)
x_sm = self.softmax(x_sa)
return x_sm