LightOJ1138 Trailing Zeroes (III)
标签
- 二分
前言
- 我的csdn和博客园是同步的,欢迎来访danzh-博客园~
简明题意
- 给定q(q<=1e8),问使得n!的末位有q个0的最小n。
思路
- 一个数末尾有q个0,意味着对这个数质因数分解,2和5的指数的最小值==q。
- 注意到在n!中,
注意事项
总结
- 一个数末尾有q个0,意味着对这个数质因数分解,2和5的指数的最小值==q。
- n!中任意一个n,2的指数一定大于5的指数,所以我们只考虑5的指数就可以了。现在,我们需要让5的指数刚好等于q,否则impossible。
- q最大1e8,1e8的答案大概是是5e8。顺序枚举会T,这里我们二分。因为发现n越大,5的指数越多。
- 讲下如何计算n!中有多少个约数5。这里容斥一下,结果是 ∑ i = 1 5 i < = n n 5 i \sum\limits_{i=1}^{5i<=n}\frac n{5^i} i=1∑5i<=n5in
AC代码
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int cal(int x)
{
int ans = 0;
int cur = 5;
while (cur <= x)
ans += x / cur, cur *= 5;
return ans;
}
void solve()
{
int t;
scanf("%d", &t);
for (int k = 1; k <= t; k++)
{
int n;
scanf("%d", &n);
int l = 5, r = 5e8, ans = 1e9;
while (l <= r)
{
int mid = (l + r) / 2;
if (cal(mid) >= n)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
if (cal(ans) == n)
printf("Case %d: %d\n", k, ans);
else
printf("Case %d: impossible\n", k);
}
}
int main()
{
freopen("Testin.txt", "r", stdin);
solve();
return 0;
}