(已搬家)洛谷P1390 公约数的和 欧拉函数+容斥+线性筛


洛谷P1390 公约数的和


标签

  • 欧拉函数
  • 线性筛
  • 容斥

前言

  • 我的csdn和博客园是同步的,欢迎来访danzh-博客园~
    欢迎关注~
  • 被自己以前的博客坑了…

简明题意

  • 给定 n ( n &lt; = 2 e 6 ) n(n &lt;= 2e6) n(n<=2e6),需要你求
    ∑ i = 1 n ∑ j = i + 1 n g c d ( i , j ) \sum_{i=1}^n\sum_{j=i+1}^ngcd(i,j) i=1nj=i+1ngcd(i,j)

思路

  • 首先我们把原式改成枚举gcd,然后用gcd的值去乘以出现的次数,于是原式等价于:
    ∑ d = 1 n ( d ∗ ∑ i = 1 n ∑ j = i + 1 n [ g c d ( i , j ) = = d ] ) \sum_{d=1}^n\left(d*\sum_{i=1}^n\sum_{j=i+1}^n[gcd(i,j)==d]\right) d=1n(di=1nj=i+1n[gcd(i,j)==d])
  • 看到 [ g c d ( i , j ) = = d ] [gcd(i,j)==d] [gcd(i,j)==d]是不是很激动?(不激动的同学应该是刚刚入门,基础还不牢固,那就建议看看我关于这类题的其他入门级别的博客)

这里我再啰嗦一下,看到 [ g c d ( i , j ) = = d ] [gcd(i,j)==d] [gcd(i,j)==d]后,首要的工作是通过改变枚举上限,把它写成 [ g c d ( i , j ) = = 1 ] [gcd(i,j)==1] [gcd(i,j)==1]的形式,为什么要这样做?因为换成 [ g c d ( i , j ) = = 1 ] [gcd(i,j)==1] [gcd(i,j)==1]这种形式,既可以用欧拉函数快速求出,也可以用莫比乌斯函数性质替换从而降低复杂度。而通常,对于 ∑ i ∑ j [ g c d ( i , j ) = = 1 ] \sum_i\sum_j[gcd(i,j)==1] ij[gcd(i,j)==1],如果 i , j i,j i,j的上限相同,则用直接欧拉函数求,如果 i , j i,j i,j的上限不相同,则应该用莫比乌斯函数性质替换 ∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum\limits_{d|n}\mu(d)=[n==1] dnμ(d)=[n==1]

  • 这里 i , j i,j i,j的范围是一样的,因此我们考虑用欧拉函数求。但是 ∑ i = 1 n ∑ j = i + 1 n [ g c d ( i , j ) = = d ] \sum_{i=1}^n\sum_{j=i+1}^n[gcd(i,j)==d] i=1nj=i+1n[gcd(i,j)==d]我们只知道
    ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = d ] \sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d] i=1nj=1n[gcd(i,j)==d]
    的求法,如果j不从1开始枚举,那就不知道怎么求了。这时候,我们用容斥。我们回到最原始的式子:
    ∑ i = 1 n ∑ j = i + 1 n g c d ( i , j ) \sum_{i=1}^n\sum_{j=i+1}^ngcd(i,j) i=1nj=i+1ngcd(i,j)
  • 很容易发现,实际上有
    ∑ i = 1 n ∑ j = i + 1 n g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 j g c d ( i , j ) \sum_{i=1}^n\sum_{j=i+1}^ngcd(i,j)=\sum_{i=1}^n\sum_{j=1}^jgcd(i,j) i=1nj=i+1ngcd(i,j)=i=1nj=1jgcd(i,j)
    因为这两半是对称的,而又有
    ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) = ∑ i = 1 n ∑ j = i + 1 n g c d ( i , j ) + ∑ i = 1 n ∑ j = 1 j g c d ( i , j ) + 对 角 线 的 g c d 之 和 \sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{i=1}^n\sum_{j=i+1}^ngcd(i,j)+\sum_{i=1}^n\sum_{j=1}^jgcd(i,j)+对角线的gcd之和 i=1nj=1ngcd(i,j)=i=1nj=i+1ngcd(i,j)+i=1nj=1jgcd(i,j)+线gcd
  • 对角线的ij是相等的,而且gcd(i,i)就等于i,与就是,对角线gcd之和= ∑ i n i = ( 1 + n ) ∗ n 2 \sum_i^ni=\frac {(1+n)*n}2 ini=2(1+n)n,所以,
    ∑ i = 1 n ∑ j = i + 1 n g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) − ( 1 + n ) ∗ n 2 2 \sum_{i=1}^n\sum_{j=i+1}^ngcd(i,j)= \frac {\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)-\frac {(1+n)*n}2}{2} i=1nj=i+1ngcd(i,j)=2i=1nj=1ngcd(i,j)2(1+n)n
  • 现在问题就转换成求
    ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^ngcd(i,j) i=1nj=1ngcd(i,j)
  • 改为枚举 g c d ( i , j ) gcd(i,j) gcd(i,j)
    ∑ d = 1 n ( d ∗ ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = d ] ) \sum_{d=1}^n\left(d*\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d]\right) d=1n(di=1nj=1n[gcd(i,j)==d])
  • g c d ( i , j ) = = 1 gcd(i,j)==1 gcd(i,j)==1
    ∑ d = 1 n ( d ∗ ∑ i = 1 [ n d ] ∑ j = 1 [ n d ] [ g c d ( i , j ) = = 1 ] ) \sum_{d=1}^n\left(d*\sum_{i=1}^{[\frac nd]}\sum_{j=1}^{[\frac nd]}[gcd(i,j)==1]\right) d=1ndi=1[dn]j=1[dn][gcd(i,j)==1]
  • 其中
    ∑ i = 1 [ n d ] ∑ j = 1 [ n d ] [ g c d ( i , j ) = = 1 ] = 2 ∗ p r e ϕ ( [ p d ] ) − 1 \sum_{i=1}^{[\frac nd]}\sum_{j=1}^{[\frac nd]}[gcd(i,j)==1]=2*pre\phi([\frac pd])-1 i=1[dn]j=1[dn][gcd(i,j)==1]=2preϕ([dp])1
  • 原式:
    ∑ d = 1 n ( d ∗ ( 2 ∗ p r e ϕ ( [ p d ] ) − 1 ) ) \sum_{d=1}^n\left(d* \left(2*pre\phi([\frac pd])-1\right)\right) d=1n(d(2preϕ([dp])1))
  • 接下来先把 ϕ \phi ϕ线性筛出来,然后前缀和一下,最后的复杂度就是 O ( n ) O(n) O(n)

注意事项

  • 注意是
    ∑ i = 1 [ n d ] ∑ j = 1 [ n d ] [ g c d ( i , j ) = = 1 ] = 2 ∗ p r e ϕ ( [ p d ] ) − 1 \sum_{i=1}^{[\frac nd]}\sum_{j=1}^{[\frac nd]}[gcd(i,j)==1]=2*pre\phi([\frac pd])-1 i=1[dn]j=1[dn][gcd(i,j)==1]=2preϕ([dp])1
    而不是
    ∑ i = 1 [ n d ] ∑ j = 1 [ n d ] [ g c d ( i , j ) = = 1 ] = 2 ∗ ϕ ( [ p d ] ) − 1 \sum_{i=1}^{[\frac nd]}\sum_{j=1}^{[\frac nd]}[gcd(i,j)==1]=2*\phi([\frac pd])-1 i=1[dn]j=1[dn][gcd(i,j)==1]=2ϕ([dp])1
    不要把那个前缀和搞成 ϕ ( [ p d ] ) \phi([\frac pd]) ϕ([dp])

总结

  • 不要把那个前缀和搞成 ϕ ( [ p d ] ) \phi([\frac pd]) ϕ([dp])

AC代码

#include<cstdio>

const int maxn = 2e6 + 10;

bool no_prime[maxn];
int prime[maxn], phi[maxn];
long long pre[maxn];
int shai(int n)
{
	int cnt = 0;
	phi[1] = 1;

	for (int i = 2; i <= n; i++)
	{
		if (!no_prime[i])
			prime[++cnt] = i, phi[i] = i - 1;

		for (int j = 1; j <= cnt && prime[j] * i <= n; j++)
		{
			no_prime[prime[j] * i] = 1;
			phi[prime[j] * i] = (i % prime[j] == 0) ? phi[i] * prime[j] : phi[i] * (prime[j] - 1);
			if (i % prime[j] == 0) break;
		}
	}

	for (int i = 1; i <= n; i++)
		pre[i] = pre[i - 1] + phi[i];

	return cnt;
}

void solve()
{
	long long n;
	scanf("%lld", &n);
	shai(n);

	long long ans = 0;
	for (int d = 1; d <= n; d++)
		ans += (2 * pre[n / d] - 1) * d;
	printf("%lld\n", (ans - (1 + n) * n / 2) / 2);
}

int main()
{
	solve();
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值