##结论
- 矩阵 A A A的列空间是整个 R m R^m Rm的要求,意味着 A A A至少有 m m m列,即 n ≥ m n≥m n≥m。否则, A A A列空间的维数会小于 m m m。
- 如果一个矩阵的列空间涵盖整个 R m R^m Rm,那么该矩阵必须包含至少一组m个线性无关的向量。这是式 A x = b Ax = b Ax=b对于每一个向量 b b b的取值都有解的充分必要条件。值得注意的是,这个条件是说该向量集恰好有 m m m个线性无关的列向量,而不是至少 m m m个。
- 不存在一个 m m m维向量的集合具有多于 m m m个彼此线性不相关的列向量,但是一个有多于 m m m个列向量的矩阵有可能拥有不止一个大小为 m m m的线性无关向量集。
- 要想使矩阵可逆,我们除需要矩阵 A A A有 m m m个线性无关的列向量外还需要保证式 A x = b Ax=b Ax=b对于每一个 b b b值至多有一个解。为此,我们需要确保该矩阵至多有 m m m个列向量。否则,该方程会有不止一个解。
- 一个列向量线性相关的方阵被称为奇异的(singular)。如果矩阵 A A A不是一个方阵或者是一个奇异的方阵,该方程仍然可能有解。但是我们不能使用矩阵逆去求解。
- 如果逆矩阵 A − 1 A^{-1} A−1存在,那么式 A x = b Ax=b Ax=b肯定对于每一个向量 b b b恰好存在一个解。但是,对于方程组而言,对于向量 b b b的某些值,有可能不存在解,或者存在无限多个解。存在多于一个解但是少于无限多个解的情况是不可能发生的。
- 如果矩阵 A A A可逆,则方程一定有且仅有一个解。(注意 A A A可逆是充分不必要条件)
注:
① A A A是一个矩阵,其形状为 m × n m × n m×n。 x x x和 b b b分别是维度为 n n n和 m m m的向量。矩阵 A A A可以看成 n n n个 m m m维向量的集合。 b b b即为 A A A的列向量的线性组合,组合的系数即为 x x x中的各元素。
②一组向量的生成子空间(span)是原始向量线性组合后所能抵达的点的集合。确定 A x = b Ax=b Ax=b是否有解,相当于确定向量 b b b是否在 A A A列向量的生成子空间中。这个特殊的生成子空间被称为 A A A的列空间(column space)或者 A A A的值域(range)。
③如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量称为线性无关(linearly independent)。
##问答
- Q:结论1中为什么
A
A
A至少要有
m
m
m列?
A:假设 A A A是一个3×2的矩阵。目标 b b b是3维的,但是 x x x只有2维。所以无论如何修改 x x x的值,也只能描绘出 R 3 R^3 R3空间中的二维平面。当且仅当向量 b b b在该二维平面中时,该方程有解。 - Q:结论3中为什么说一个“不存在一个
m
m
m维向量的集合具有多于
m
m
m个彼此线性不相关的列向量”?
A:由结论2可知如果一个 m m m维向量的集合拥有 m m m个彼此线性不相关的列向量,则这些列向量的线性组合可以覆盖 R m R^m Rm中的任何一点,所以如果有 m + 1 m+1 m+1个彼此线性不相关的列向量,则多出来的1个列向量一定可以由前 m m m个列向量线性表示。 - Q:结论4中为什么需要矩阵
A
A
A最多有
m
m
m个列向量?
A:如果矩阵 A A A既有 m m m个线性无关的列向量且 A A A的列向量个数大于 m m m,则由结论3可知 A A A可能拥有不止一个大小为 m m m的线性无关向量集,每个线性无关向量集都可以通过线性组合得到向量 b b b,则方程组的解一定不唯一。 - Q:如何解释结论7?
A: A A A可逆,则可解得 x x x为 A − 1 b A^{-1}b A−1b,如果方程解不唯一,则存在 x ≠ A − 1 b x\neq A^{-1}b x=A−1b,则 A x ≠ b Ax\neq b Ax=b,所以方程有唯一解。
######(参考资料:《深度学习》)