本文为《Linear algebra and its applications》的读书笔记
目录
- Recall from Section 2.2 that a 2 × 2 2 \times 2 2×2 matrix is invertible if and only if its determinant is nonzero. To extend this useful fact to larger matrices, we need a definition for the determinant of an n × n n \times n n×n matrix.
Determinant of a 3 × 3 3\times3 3×3 matrix
- We can discover the definition for the 3 × 3 3 \times 3 3×3 case by watching what happens when an invertible 3 × 3 3 \times 3 3×3 matrix A A A is row reduced.
- Consider A = [ a i j ] A = [a_{ij}] A=[aij] with a 11 ≠ 0 a_{11} \neq 0 a11=0. If we multiply the second and third rows of A A A by a 11 a_{11} a11 and then subtract appropriate multiples of the first row from the other two rows, we find that A A A is row equivalent to the following two matrices:
- Since
A
A
A is invertible, either the
(
2
,
2
)
(2, 2)
(2,2)-entry or the
(
3
,
2
)
(3, 2)
(3,2)-entry on the right in (1) is nonzero. Let us suppose that the
(
2
,
2
)
(2, 2)
(2,2)-entry is nonzero. (Otherwise, we can make a row interchange before proceeding.) Multiply row 3 by
a
11
a
22
−
a
12
a
21
a_{11}a_{22} - a_{12}a_{21}
a11a22−a12a21, and then to the new row 3 add
−
(
a
11
a
32
−
a
12
a
31
)
-(a_{11}a_{32}-a_{12}a_{31})
−(a11a32−a12a31) times row 2. This will show that
where
Δ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 ( 2 ) \Delta=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31}\ \ \ \ \ \ \ (2) Δ=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31 (2)Since A A A is invertible, Δ \Delta Δ must be nonzero. The converse is true, too. We call Δ \Delta Δ in (2) the determinant of the 3 × 3 3 \times 3 3×3 matrix A A A.
- Recall that the determinant of a
2
×
2
2 \times 2
2×2 matrix,
A
=
[
a
i
j
]
A = [a_{ij}]
A=[aij], is the number
d e t A = a 11 a 22 − a 12 a 21 det\ A=a_{11}a_{22}-a_{12}a_{21} det A=a11a22−a12a21For a 1 × 1 1 \times 1 1×1 matrix—say, A = [ a 11 ] A = [a_{11}] A=[a11]—we define d e t A = a 11 det\ A = a_{11} det A=a11. - To generalize the definition of the determinant to larger matrices, we’ll use
2
×
2
2 \times 2
2×2 determinants to rewrite the
3
×
3
3 \times 3
3×3 determinant
Δ
\Delta
Δ described above. Since the terms in
Δ
\Delta
Δ can be grouped as
(
a
11
a
22
a
33
−
a
11
a
23
a
32
)
−
(
a
12
a
21
a
33
−
a
12
a
23
a
31
)
+
(
a
13
a
21
a
32
−
a
13
a
22
a
31
)
(a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32}) -(a_{12}a_{21}a_{33} - a_{12}a_{23}a_{31})+(a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31})
(a11a22a33−a11a23a32)−(a12a21a33−a12a23a31)+(a13a21a32−a13a22a31).
For brevity, write
where A 11 A_{11} A11, A 12 A_{12} A12, and A 13 A_{13} A13 are obtained from A A A by deleting the first row and one of the three columns. For any square matrix A A A, let A i j A_{ij} Aij denote the submatrix formed by deleting the i i ith row and j j jth column of A A A.
Recursive definition of a determinant
- Another common notation for the determinant of a matrix uses a pair of vertical lines in place of brackets.
Cofactor expansion
余因子展开式
- Given
A
=
[
a
i
j
]
A = [a_{ij}]
A=[aij], the
(
i
,
j
)
(i, j)
(i,j)-cofactor of
A
A
A is the number
C
i
j
C_{ij}
Cij given by
Then
- This formula is called a cofactor expansion across the first row of A A A.
We omit the proof of the following fundamental theorem to avoid a lengthy digression.
- The factor
(
−
1
)
i
+
j
(-1)^{i+j}
(−1)i+j determines the following checkerboard pattern of signs:
- 性质:行列式某一列的每个元素乘另一列对应元素的余因子之和等于 0,即
a 1 i C 1 j + a 2 i C 2 j + . . . + a n i C n j = 0 a_{1i}C_{1j}+a_{2i}C_{2j}+...+a_{ni}C_{nj}=0 a1iC1j+a2iC2j+...+aniCnj=0- 证明:设
n
n
n 阶方阵
A
A
A 和
B
B
B 的列分块矩阵分别为
A = [ a 1 , . . . , a i , . . . , a j , . . . , a n ] B = [ a 1 , . . . , a i , . . . , a i , . . . , a n ] A=[\boldsymbol a_1,...,\boldsymbol a_i,...,\boldsymbol a_j,...,\boldsymbol a_n]\\ B=[\boldsymbol a_1,...,\boldsymbol a_i,...,\boldsymbol a_i,...,\boldsymbol a_n] A=[a1,...,ai,...,aj,...,an]B=[a1,...,ai,...,ai,...,an]将 B B B 按第 j j j 列展开,得
∣ B ∣ = a 1 i C 1 j + a 2 i C 2 j + . . . + a n i C n j |B|=a_{1i}C_{1j}+a_{2i}C_{2j}+...+a_{ni}C_{nj} ∣B∣=a1iC1j+a2iC2j+...+aniCnj而 B B B 有两列相同,因此 ∣ B ∣ = 0 |B|=0 ∣B∣=0,因此得证
- 证明:设
n
n
n 阶方阵
A
A
A 和
B
B
B 的列分块矩阵分别为
- Theorem 1 is helpful for computing the determinant of a matrix that contains many zeros.
EXAMPLE 3
Compute d e t A det\ A det A, where
A
=
[
3
−
7
8
9
−
6
0
2
−
5
7
3
0
0
1
5
0
0
0
2
4
−
1
0
0
0
−
2
0
]
A=\left[\begin{array}{rrrrr} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{array}\right]
A=⎣⎢⎢⎢⎢⎡30000−720008−51209754−2−630−10⎦⎥⎥⎥⎥⎤
SOLUTION
三角矩阵的行列式
- The matrix in Example 3 was nearly triangular. The method in that example is easily adapted to prove the following theorem.