Chapter 3 (Determinants): Introduction to determinants (行列式)

本文为《Linear algebra and its applications》的读书笔记

  • Recall from Section 2.2 that a 2 × 2 2 \times 2 2×2 matrix is invertible if and only if its determinant is nonzero. To extend this useful fact to larger matrices, we need a definition for the determinant of an n × n n \times n n×n matrix.

Determinant of a 3 × 3 3\times3 3×3 matrix

  • We can discover the definition for the 3 × 3 3 \times 3 3×3 case by watching what happens when an invertible 3 × 3 3 \times 3 3×3 matrix A A A is row reduced.
  • Consider A = [ a i j ] A = [a_{ij}] A=[aij] with a 11 ≠ 0 a_{11} \neq 0 a11=0. If we multiply the second and third rows of A A A by a 11 a_{11} a11 and then subtract appropriate multiples of the first row from the other two rows, we find that A A A is row equivalent to the following two matrices:

在这里插入图片描述

  • Since A A A is invertible, either the ( 2 , 2 ) (2, 2) (2,2)-entry or the ( 3 , 2 ) (3, 2) (3,2)-entry on the right in (1) is nonzero. Let us suppose that the ( 2 , 2 ) (2, 2) (2,2)-entry is nonzero. (Otherwise, we can make a row interchange before proceeding.) Multiply row 3 by a 11 a 22 − a 12 a 21 a_{11}a_{22} - a_{12}a_{21} a11a22a12a21, and then to the new row 3 add − ( a 11 a 32 − a 12 a 31 ) -(a_{11}a_{32}-a_{12}a_{31}) (a11a32a12a31) times row 2. This will show that
    在这里插入图片描述where
    Δ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31         ( 2 ) \Delta=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31}\ \ \ \ \ \ \ (2) Δ=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31       (2)Since A A A is invertible, Δ \Delta Δ must be nonzero. The converse is true, too. We call Δ \Delta Δ in (2) the determinant of the 3 × 3 3 \times 3 3×3 matrix A A A.

  • Recall that the determinant of a 2 × 2 2 \times 2 2×2 matrix, A = [ a i j ] A = [a_{ij}] A=[aij], is the number
    d e t   A = a 11 a 22 − a 12 a 21 det\ A=a_{11}a_{22}-a_{12}a_{21} det A=a11a22a12a21For a 1 × 1 1 \times 1 1×1 matrix—say, A = [ a 11 ] A = [a_{11}] A=[a11]—we define d e t   A = a 11 det\ A = a_{11} det A=a11.
  • To generalize the definition of the determinant to larger matrices, we’ll use 2 × 2 2 \times 2 2×2 determinants to rewrite the 3 × 3 3 \times 3 3×3 determinant Δ \Delta Δ described above. Since the terms in Δ \Delta Δ can be grouped as ( a 11 a 22 a 33 − a 11 a 23 a 32 ) − ( a 12 a 21 a 33 − a 12 a 23 a 31 ) + ( a 13 a 21 a 32 − a 13 a 22 a 31 ) (a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32}) -(a_{12}a_{21}a_{33} - a_{12}a_{23}a_{31})+(a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}) (a11a22a33a11a23a32)(a12a21a33a12a23a31)+(a13a21a32a13a22a31).
    在这里插入图片描述For brevity, write
    在这里插入图片描述where A 11 A_{11} A11, A 12 A_{12} A12, and A 13 A_{13} A13 are obtained from A A A by deleting the first row and one of the three columns. For any square matrix A A A, let A i j A_{ij} Aij denote the submatrix formed by deleting the i i ith row and j j jth column of A A A.

Recursive definition of a determinant

在这里插入图片描述

  • Another common notation for the determinant of a matrix uses a pair of vertical lines in place of brackets.
    在这里插入图片描述在这里插入图片描述

Cofactor expansion

余因子展开式

  • Given A = [ a i j ] A = [a_{ij}] A=[aij], the ( i , j ) (i, j) (i,j)-cofactor of A A A is the number C i j C_{ij} Cij given by
    在这里插入图片描述Then
    在这里插入图片描述
    • This formula is called a cofactor expansion across the first row of A A A.

We omit the proof of the following fundamental theorem to avoid a lengthy digression.

在这里插入图片描述

  • The factor ( − 1 ) i + j (-1)^{i+j} (1)i+j determines the following checkerboard pattern of signs:
    在这里插入图片描述

在这里插入图片描述


  • 性质:行列式某一列的每个元素乘另一列对应元素的余因子之和等于 0,即
    a 1 i C 1 j + a 2 i C 2 j + . . . + a n i C n j = 0 a_{1i}C_{1j}+a_{2i}C_{2j}+...+a_{ni}C_{nj}=0 a1iC1j+a2iC2j+...+aniCnj=0
    • 证明:设 n n n 阶方阵 A A A B B B 的列分块矩阵分别为
      A = [ a 1 , . . . , a i , . . . , a j , . . . , a n ] B = [ a 1 , . . . , a i , . . . , a i , . . . , a n ] A=[\boldsymbol a_1,...,\boldsymbol a_i,...,\boldsymbol a_j,...,\boldsymbol a_n]\\ B=[\boldsymbol a_1,...,\boldsymbol a_i,...,\boldsymbol a_i,...,\boldsymbol a_n] A=[a1,...,ai,...,aj,...,an]B=[a1,...,ai,...,ai,...,an] B B B 按第 j j j 列展开,得
      ∣ B ∣ = a 1 i C 1 j + a 2 i C 2 j + . . . + a n i C n j |B|=a_{1i}C_{1j}+a_{2i}C_{2j}+...+a_{ni}C_{nj} B=a1iC1j+a2iC2j+...+aniCnj B B B 有两列相同,因此 ∣ B ∣ = 0 |B|=0 B=0,因此得证

  • Theorem 1 is helpful for computing the determinant of a matrix that contains many zeros.

EXAMPLE 3

Compute d e t   A det\ A det A, where

A = [ 3 − 7 8 9 − 6 0 2 − 5 7 3 0 0 1 5 0 0 0 2 4 − 1 0 0 0 − 2 0 ] A=\left[\begin{array}{rrrrr} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{array}\right] A=3000072000851209754263010
SOLUTION
在这里插入图片描述

三角矩阵的行列式

  • The matrix in Example 3 was nearly triangular. The method in that example is easily adapted to prove the following theorem.
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值