Chapter 2 (Matrix Algebra): The inverse of a matrix (矩阵的逆)

本文为《Linear algebra and its applications》的读书笔记

The inverse of a matrix

  • Recall that the multiplicative inverse (乘法逆) of a number such as 5 is 1/5 or 5 − 1 5^{-1} 51. This inverse satisfies the equations
    5 − 1 ⋅ 5 = 1 ,        5 ⋅ 5 − 1 = 1 5^{-1}\cdot5=1,\ \ \ \ \ \ 5\cdot5^{-1}=1 515=1,      551=1
  • The matrix generalization requires b o t h both both equations and avoids the slanted-line (斜线) notation (for division) because matrix multiplication is not commutative (可交换的).
  • Furthermore, a full generalization is possible only if the matrices involved are square. (Check Example 1~3)

EXAMPLE 1

Suppose C A = I n CA = I_n CA=In (the n × n n \times n n×n identity matrix). Show that A A A cannot have more columns than rows.

SOLUTION

  • If x \boldsymbol x x satisfies A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0, then C A x = C 0 = 0 CA\boldsymbol x = C\boldsymbol 0 = \boldsymbol 0 CAx=C0=0 and so I n x = 0 I_n\boldsymbol x = \boldsymbol 0 Inx=0 and x = 0 \boldsymbol x = \boldsymbol 0 x=0. This implies that A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 only has the trivial solution and the echelon form of A A A must have no free variables. Thus A A A cannot have more columns than rows.

EXAMPLE 2

Suppose A D = I m AD = I_m AD=Im. Show that A A A cannot have more rows than columns.

SOLUTION

  • For any b \boldsymbol b b in R m \mathbb R^m Rm, the equation A x = b Ax = \boldsymbol b Ax=b has a solution. ( A D b = b AD\boldsymbol b = \boldsymbol b ADb=b) Thus A A A cannot have more rows than columns.
  • We can also apply the transpose operation to obtain D T A T = I m D^TA^T=I_m DTAT=Im. Then the result from example 1 can lead us to the conclusion.

EXAMPLE 3

Suppose A A A is an m × n m \times n m×n matrix and there exist n × m n \times m n×m matrices C C C and D D D such that C A = I n CA = I_n CA=In and A D = I m AD = I_m AD=Im: Prove that m = n m = n m=n and C = D C = D C=D.

SOLUTION

  • By EXAMPLE 1, the equation C A = I n CA = I_n CA=In implies that m ≥ n m\geq n mn. By EXAMPLE 2, the equation A D = I m AD = I_m AD=Im implies that m ≤ n m\leq n mn. Thus m = n m=n m=n.
  • To prove the second statement, C = C I n = C ( A D ) = ( C A ) D = I n D = D C = CI_n = C(AD) = (CA)D = I_nD = D C=CIn=C(AD)=(CA)D=InD=D

代数结构中,若运算满足结合律且左右逆元均存在,则左右逆元相同 ( C = D C=D C=D)。同时,逆元唯一,即 A A A 的逆唯一


  • An n × n n \times n n×n matrix A A A is said to be invertible (可逆的) if there is an n × n n \times n n×n matrix C C C such that
    C A = I n ,      A C = I n CA=I_n,\ \ \ \ AC=I_n CA=In,    AC=InIn this case, C C C is an inverse (逆) of A A A. C C C is uniquely determined by A A A. This unique inverse is denoted by A − 1 A^{-1} A1, so that
    A − 1 A = I n ,      A A − 1 = I n A^{-1}A=I_n,\ \ \ \ AA^{-1}=I_n A1A=In,    AA1=In
  • A matrix that is not invertible is sometimes called a singular matrix (奇异矩阵), and an invertible matrix is called a nonsingular matrix (非奇异矩阵).

已知 A A A n × n n\times n n×n 矩阵,且 C A = I CA=I CA=I,则 A x = 0 A\boldsymbol x =\boldsymbol 0 Ax=0 只有平凡解, A A A n n n 个主元列, A ∼ I A\sim I AI,因此 A A A 可逆, C = A − 1 C=A^{-1} C=A1
同理已知 A A A n × n n\times n n×n 矩阵,且 A D = I AD=I AD=I,则 A A A 可逆, D = A − 1 D=A^{-1} D=A1


  • Here is a simple formula for the inverse of a 2 × 2 2 \times 2 2×2 matrix, along with a test to tell if the inverse exists.

在这里插入图片描述

  • The quantity a d − b c ad - bc adbc is called the determinant (行列式) of A A A, and we write
    d e t   A = a d − b c det\ A = ad - bc det A=adbc
  • Theorem 4 says that a 2 × 2 2 \times 2 2×2 matrix A A A is invertible if and only if d e t   A ≠ 0 det\ A \neq 0 det A=0.

在这里插入图片描述

  • Numerical Notes:
    • The formula in Theorem 5 is seldom used to solve an equation A x = b A\boldsymbol x = \boldsymbol b Ax=b numerically because row reduction of [    A     b    ] [\ \ A\ \ \ \boldsymbol b\ \ ] [  A   b  ] is nearly always faster. (Row reduction is usually more accurate, too, when computations involve rounding off numbers.)
    • One possible exception is the 2 × 2 2 \times 2 2×2 case. In this case, mental computations to solve A x = b A\boldsymbol x = \boldsymbol b Ax=b are sometimes easier using the formula for A − 1 A^{-1} A1, as in the next example.

EXAMPLE 4

Use the inverse of the matrix to solve the system

在这里插入图片描述
SOLUTION
在这里插入图片描述


在这里插入图片描述

  • The following generalization of Theorem 6(b) is needed later.
    在这里插入图片描述

Elementary Matrices

初等矩阵

  • There is an important connection between invertible matrices and row operations that leads to a method for computing inverses. As we shall see, an invertible matrix A A A is row equivalent to an identity matrix, and we can find A − 1 A^{-1} A1 by watching the row reduction of A A A to I I I.

  • An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.
  • The next example illustrates the three kinds of elementary matrices.

EXAMPLE 5

Let
在这里插入图片描述
Compute E 1 A E_1A E1A, E 2 A E_2A E2A, and E 3 A E_3A E3A, and describe how these products can be obtained by elementary row operations on A A A.

SOLUTION

  • Addition of − 4 -4 4 times row 1 of A A A to row 3 produces E 1 A E_1A E1A. (This is a row replacement operation.) An interchange of rows 1 and 2 of A A A produces E 2 A E_2A E2A, and multiplication of row 3 of A A A by 5 produces E 3 A E_3A E3A.
    在这里插入图片描述
  • Left-multiplication by E 1 E_1 E1 in Example 5 has the same effect on any 3 × n 3 \times n 3×n matrix. It adds − 4 -4 4 times row 1 to row 3. In particular, since E 1 ⋅ I = E 1 E_1 \cdot I = E_1 E1I=E1, we see that E 1 E_1 E1 itself is produced by this same row operation on the identity.

  • Example 5 illustrates the following general fact about elementary matrices.

在这里插入图片描述
PROOF (下面的证明以 3 × 3 3\times3 3×3 矩阵为例)
∵ A = I ⋅ A ∴ r o w i ( A ) = r o w i ( I ) ⋅ A \begin{aligned} \because A&=I\cdot A \\\therefore row_i(A)&=row_i(I)\cdot A \end{aligned} Arowi(A)=IA=rowi(I)Aa. Show that if rows 1 and 2 of A A A are interchanged, then the result may be written as E A EA EA, where E E E is an elementary matrix formed by interchanging rows 1 and 2 of I I I.
在这里插入图片描述
b. Show that if row 3 of A A A is multiplied by 5, then the result may be written as E A EA EA, where E E E is formed by multiplying row 3 of I I I by 5.
在这里插入图片描述


  • Since row operations are reversible, elementary matrices are invertible. Hence there is an elementary matrix F F F such that F E = I FE = I FE=I. Since E E E and F F F correspond to reverse operations, E F = I EF = I EF=I, too.

在这里插入图片描述


EXAMPLE 6
Find the inverse of E 1 = [ 1 0 0 0 1 0 − 4 0 1 ] E_1=\begin{bmatrix}1&0&0\\0&1&0\\-4&0&1\end{bmatrix} E1=104010001.
SOLUTION
E 1 − 1 = [ 1 0 0 0 1 0 4 0 1 ] E_1^{-1}=\begin{bmatrix}1&0&0\\0&1&0\\4&0&1\end{bmatrix} E11=104010001


  • The following theorem provides the best way to “visualize” an invertible matrix, and the theorem leads immediately to a method for finding the inverse of a matrix.

在这里插入图片描述
PROOF

  • Suppose that A A A is invertible. Then, since the equation A x = b A\boldsymbol x =\boldsymbol b Ax=b has a solution for each b \boldsymbol b b, A A A has a pivot position in every row. Because A A A is square, the n n n pivot positions must be on the diagonal, which implies that the reduced echelon form of A A A is I n I_n In. That is, A ∼ I n A \sim I_n AIn.
  • Now suppose, conversely, that A ∼ I n A \sim I_n AIn. Then, since each step of the row reduction of A A A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices E 1 , . . . , E p E_1,...,E_p E1,...,Ep such that
    A ∼ E 1 A ∼ E 2 ( E 1 A ) ∼ . . . ∼ E p ( E p − 1 . . . E 1 A ) = I n A \sim E_1A \sim E_2(E_1A)\sim ...\sim E_p(E_{p-1}...E_1A) = I_n AE1AE2(E1A)...Ep(Ep1...E1A)=InThat is,
    E p . . . E 1 A = I n          ( 1 ) E_p...E_1A = I_n\ \ \ \ \ \ \ \ (1) Ep...E1A=In        (1) Since the product E p . . . E 1 E_p...E_1 Ep...E1 of invertible matrices is invertible, ( 1 ) (1) (1) leads to
    ( E p . . . E 1 ) − 1 ( E p . . . E 1 ) A = ( E p . . . E 1 ) − 1 I n A = ( E p . . . E 1 ) − 1 \begin{aligned}(E_p...E_1)^{-1}(E_p...E_1)A &= (E_p...E_1)^{-1}I_n\\A&=(E_p...E_1)^{-1}\end{aligned} (Ep...E1)1(Ep...E1)AA=(Ep...E1)1In=(Ep...E1)1Thus A A A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,
    A − 1 = [ ( E p . . . E 1 ) − 1 ] − 1 = E p . . . E 1 A^{-1}=[(E_p...E_1)^{-1}]^{-1}= E_p...E_1 A1=[(Ep...E1)1]1=Ep...E1Then A − 1 = E p . . . E 1 ⋅ I n A^{-1}= E_p...E_1\cdot I_n A1=Ep...E1In, which says that A − 1 A^{-1} A1 results from applying E 1 , . . . , E p E_1,...,E_p E1,...,Ep successively to I n I_n In. This is the same sequence in (1) that reduced A A A to I n I_n In.

An Algorithm for Finding A – 1 A^{–1} A1

在这里插入图片描述
EXAMPLE 7
Find the inverse of the matrix A = [ 0 1 2 1 0 3 4 − 3 8 ] A=\begin{bmatrix} 0&1&2\\1&0&3\\4&-3&8\end{bmatrix} A=014103238, if it exists.
SOLUTION
在这里插入图片描述
在这里插入图片描述


举一反三:

  • 如果想计算 A − 1 B A^{-1}B A1B 的话,也可以由行化简求得:若 [ A     B ] ∼ . . . ∼ [ I     X ] [A\ \ \ B]\sim ...\sim[I\ \ \ X] [A   B]...[I   X],则 X = A − 1 B X=A^{-1}B X=A1B
    • 如果 A A A 是大于 2 × 2 2\times2 2×2 的矩阵,则用行化简的方法求要比直接求快得多
  • We can even accelerate this process by using the LU factorization of A A A, which is adapted by MATLAB.

Another View of Matrix Inversion

  • Denote the columns of I n I_n In by e 1 , . . . , e n \boldsymbol e_1,...,\boldsymbol e_n e1,...,en. Then row reduction of [    A     I    ] [\ \ A \ \ \ I\ \ ] [  A   I  ] to [    I     A − 1    ] [\ \ I \ \ \ A^{-1}\ \ ] [  I   A1  ] can be viewed as the simultaneous solution of the n n n systems
    A x 1 = e 1 , A x 2 = e 2 , . . . , A x n = e n       ( 2 ) A\boldsymbol x_1=\boldsymbol e_1,A\boldsymbol x_2=\boldsymbol e_2,...,A\boldsymbol x_n=\boldsymbol e_n\ \ \ \ \ (2) Ax1=e1,Ax2=e2,...,Axn=en     (2)where the “augmented columns” of these systems have all been placed next to A A A to form [    A    e 1    e 2    . . .    e n    ] = [    A    I    ] [\ \ A\ \ \boldsymbol e_1\ \ \boldsymbol e_2\ \ ... \ \ \boldsymbol e_n\ \ ] =[\ \ A\ \ I\ \ ] [  A  e1  e2  ...  en  ]=[  A  I  ]. The equation A A − 1 = I AA^{-1} = I AA1=I and the definition of matrix multiplication show that the columns of A − 1 A^{-1} A1 are precisely the solutions of the systems in (2).
  • This observation is useful because some applied problems may require finding only one or two columns of A − 1 A^{-1} A1. In this case, only the corresponding systems in (2) need be solved.

在这里插入图片描述


EXAMPLE 8

Let A = [ 1 0 . . . . . . . . . 0 1 1 0 . . . . . . 0 1 1 1 0 . . . 0 . . . . . . . . . . . . . . . . . . 1 1 1 1 1 0 1 1 1 1 1 1 ] A=\begin{bmatrix} 1&0&...&...&...&0\\ 1&1&0&...&...&0\\1&1&1&0&...&0\\ ...&...&...&...&...&... \\ 1&1&1&1&1&0\\ 1&1&1&1&1&1 \end{bmatrix} A=111...11011...11...01...11......0...11............11000...01. A A A is an n × n n\times n n×n matrix. Let B B B be its inverse. Guess the form of B B B, and then prove that A B = I AB = I AB=I and B A = I BA = I BA=I.

SOLUTION

  • Let a j \boldsymbol a_j aj, b j \boldsymbol b_j bj, and e j \boldsymbol e_j ej denote the j j jth columns of A A A, B B B, and I I I, respectively. Note that for j = 1 , … , n – 1 j = 1, …, n – 1 j=1,,n1, a j – a j + 1 = e j \boldsymbol a_j – \boldsymbol a_{j+1} = \boldsymbol e_j ajaj+1=ej.
  • Suppose B = A − 1 B=A^{-1} B=A1, then A b j = e j = a j − a j + 1 = A e j − A e j + 1 = A ( e j − e j + 1 ) A\boldsymbol b_j=\boldsymbol e_j=\boldsymbol a_j-\boldsymbol a_{j+1}=A\boldsymbol e_j-A\boldsymbol e_{j+1}=A(\boldsymbol e_j-\boldsymbol e_{j+1}) Abj=ej=ajaj+1=AejAej+1=A(ejej+1), A b n = e n = a n = A e n A\boldsymbol b_n=\boldsymbol e_n=\boldsymbol a_n=A\boldsymbol e_n Abn=en=an=Aen. Thus b j = e j – e j + 1 \boldsymbol b_j = \boldsymbol e_j – \boldsymbol e_{j+1} bj=ejej+1 and b n = e n \boldsymbol b_n = \boldsymbol e_n bn=en.

也可以从初等行变换的角度来考虑

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值