[AAAI 2022] TransFG: A Transformer Architecture for Fine-grained Recognition

TransFG Architecture

在这里插入图片描述

  • Overlapping patch split:ViT 是把图片分成一系列不重叠的 patches,作者认为这可能会破坏 discriminative regions. 为了解决上述问题,作者提出使用 Overlapping patch split,划分的 patch 数 N N N
    在这里插入图片描述其中, P P P 为 patch 大小, S S S 为步长
  • Part Selection Module:FGVC 需要模型精准定位出图像中用来区分相似类别的 discriminative regions. 如下图所示,模型需要关注到鸟的眼睛以及喉咙才能对它们进行正确分类。CNN 架构的网络常用 RPN 或是弱监督分割算法来解决这一问题
    在这里插入图片描述而作者认为,ViT 的多头自注意力机制就已经可以很好地帮助模型区分出显著特征区域了。假设有 L L L 个 Transformer 层,注意力头数为 K K K,batch size 为 b s bs bs,图像的分块数为 p p p,作者将前 L − 1 L-1 L1 层的注意力矩阵 a l ∈ R b s × K × ( p + 1 ) × ( p + 1 ) a_l\in\R^{bs\times K\times (p+1)\times(p+1)} alRbs×K×(p+1)×(p+1) ( ( p + 1 ) × ( p + 1 ) (p+1)\times(p+1) (p+1)×(p+1) 是 [CLS] 和各个 patch 之间的注意力矩阵) 用矩阵乘积相乘来融合前 L − 1 L-1 L1 层的的注意力权重信息
    在这里插入图片描述其中 a f i n a l ∈ R b s × K × ( p + 1 ) × ( p + 1 ) a_{final}\in\R^{bs\times K\times (p+1)\times(p+1)} afinalRbs×K×(p+1)×(p+1). 然后作者根据每个 head 内 [CLS] 和各个 patch 的注意力权重来选择 K K K 个显著特征区域 (疑问:这个选择的过程是不可导的,因此是不会被优化的,但是直接把所有注意力矩阵乘起来有很高的可解释性吗?这一点作者没有做出详细的解释),例如对于样本 i i i 的 head j j j,选取出的显著特征区域索引为 torch.max ( a f i n a l [ i , j , 0 , 1 : ] , dim = − 1 ) [ 1 ] \text{torch.max} (a_{final}[i,j,0,1:], \text{dim}=-1)[1] torch.max(afinal[i,j,0,1:],dim=1)[1]. 对于每个样本,最终可以选出 K K K 个显著特征区域。作者最终只将选出的 K K K 个 patch 和 [CLS] 输入最后一个 Transformer 层得到最终的预测结果
  • Contrastive Feature Learning:
    在这里插入图片描述其中,为了防止对比损失项被简单负样本 (相似度较小的负样本对) 淹没,作者加入了阈值 α = 0.4 \alpha=0.4 α=0.4,只有当负样本对的相似度大于 α \alpha α 才会计算其对比损失
  • Total loss
    在这里插入图片描述

Experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


Ablation Study

  • Influence of image patch split method.
    在这里插入图片描述
  • Influence of Part Selection Module.
    在这里插入图片描述
  • Influence of contrastive loss.
    在这里插入图片描述在这里插入图片描述

在这里插入图片描述

在可视化 selected top-4 token positions 时,作者将 patch 位置不变,大小放大了一倍

References

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值