高斯核函数初始化邻接矩阵_高斯过程

本文介绍了高斯过程如何将高斯分布扩展到无限维,并着重讨论了协方差函数(核函数)在高斯过程回归中的作用。讲解了高斯过程回归的基本原理,包括均值函数、超参数优化以及稀疏近似方法,特别是平方指数(SE)核函数的应用,以解决计算复杂度问题。
摘要由CSDN通过智能技术生成

73a329aa304872b60c93bad1c744a0f3.png

高斯过程将有限维高斯分布推广到了无限维,它是关于函数的分布。

Bayesian probabilistic approaches have many virtues, including their ability to incorporate prior knowledge and their ability to link related sources of information.

高斯过程由它的均值函数

和协方差函数

所决定,一个过程

是高斯过程可以记作
  • marginalization property:新来的点不会影响到已有点的分布,这一性质可以让我们只关注观测点的分布,对于其他未观测点可以看作被边缘化(be marginalized out)了。

协方差函数(核函数)

在高斯过程中,协方差函数决定了采样的连续(光滑)性,协方差函数一般也被称为正(半)定核或者Mercel核。通常有两类核函数:平稳和非平稳。

平稳核函数具有平移不变性,两点之间的协方差只取决于它们之间的相对位置。比如Squared exponential (SE),它对应无限个高斯型基函数的和

SE核函数的形式为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值