1 问题
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
2 解法
如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”。
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么从nums[i+1]开始应该从0累积count了,因为已经变为负数的count,只会拖累总和。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int count = 0;
int res = INT32_MIN;
for(int i = 0; i < nums.size(); i++)
{
count += nums[i];
if(count > res)
{
//记录最大结果
res = count;
}
//count < 0,则清0,从下个数计算序列和
if(count < 0)
{
count = 0;
}
}
return res;
}
};
时间复杂度:O(n)
空间复杂度:O(1)