相对位置_CT图像中CT切片相对位置的预测

本文探讨了利用Python、sci-kit learn和seaborn库进行高维数据回归建模,特别是在预测CT图像中CT切片的相对位置。数据集来自UCI机器学习库,包含384个特征和53500个样本。问题定义为通过数值特征预测CT切片在人体轴线上的相对位置,这是一个回归问题。PCA用于减少特征复杂性,ElasticNet用于建模。
摘要由CSDN通过智能技术生成
ed65419e4654097693bb58140ed94b1c.png

在本文中,我们将讨论使用主成分和ElasticNet进行高维数据回归建模的技术。我们还将了解如何保存该机器学习模型以供将来使用。

获取数据和问题定义

我们将使用Python 3.x作为编程语言,并使用'sci-kit learn','seaborn'库。

这里使用的数据可以在UCI机器学习库(https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis)中找到。数据集名称为“Relative location of CT slices on axial axis Data Set”。其中包含了不同患者(男性和女性)的医学CT扫描图像的提取特征。特征本质上是数值的。目标是“预测CT切片在人体轴线上的相对位置”。

让我们首先探索数据集

import pandas as pddf = pd.read_csv('../data/slice_localization_data.csv')df.head()
a152194c5c540b8b446638e0e15ff4b4.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值