依旧的祖传开头:事先说明:笔者初三,如在叙述中有不严谨的地方,还请诸位指出,自当感激不尽。
上次在关于双曲线的文章中粗粗提到了仿射变换,接下来在本文中,我会着重介绍关于仿射变换适用的各类题型,并给予个人的见解。(接下来这段文字摘自上文)
通俗地说,在平面坐标系内,仿射变换就是对一堆向量进行旋转和放大缩小的变换。
例如:一个单位圆x²+y²=1,如果将这个圆在水平方向上拉伸两倍,使得新的{x’=2x,y’=y},那么明显这个图形就变成了x’²/4+y’²=1,也就是椭圆。在几何直观上,也同样非常好理解。
在仿射变换中,由于改变的只是向量的方向、长度,而且是所有的向量同时发生变换,可以得到以下结论:
1.定比分点仍然成立。2.直线的平行关系仍然成立。3.直线与曲线之间的相切、相交、相离等关系仍然成立。4.由于旋转不影响图形面积,则若变换中{x’=λx,y’=μy},则有S’=λμS
5.k’=μ/λk
值得注意的是:角度的变换在仿射变换中相对复杂,所以一般不会关于角的关系使用仿射变换求解。
对于椭圆,仿射变换的意义,在于可以利用圆的性质来探究椭圆的性质了
1.蝴蝶定理
关于蝴蝶定理,请各位读者优先阅读锐腾君的一篇文章~(个人认为他写的很好了,个人既然无法给出更加好的介绍,本着便利读者的心态,选择推荐)
王锐腾-return:【圆锥曲线】蝴蝶定理及以其为构型的题目选讲zhuanlan.zhihu.com
由他的文章,我们可以得知:1.蝴蝶定理对于任意二次曲线适用。
2.蝴蝶定理适合解决关于比例、k值之比的问题。
例题如下:
α.斜率乘积问题
已知椭圆C:x²/16+y²/12=1,其左顶点为A,右顶点为B,过右焦点F的直线l与椭圆交于C、D,(kl≠0),记kAC=k1,kBD=k2,问是否存在常数λ,使得l转动过程中,有k1=λk2恒成立?

观察题目的几何构型,我们可以发现这是一个典型的蝴蝶形,而且需要研究斜率的两条线恰好和定量线段产生关系,于是我们选择做垂线构造蝴蝶:
解:过点F作直线PQ⊥AB,分别交AC于P,BD于Q
所以PF=FQ=t,又由题设条件,可以得到a=4,c=2,则k1=t/(4+2)=t/6,k2=t/(4-2)=t/2,∴所求λ=⅓。
点评:该题就是典型的