椭圆极点极线初探

本文探讨椭圆曲线的几何性质,包括椭圆内外点的切线方程,椭圆上两点间中点的坐标特性,以及椭圆的极线概念。极线是椭圆中与给定点共轭方向的直线,根据点的位置,极线可能是切线、相交线或相离线。随着点的移动,极线表现出动态变化,揭示了椭圆的奇妙几何结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是高中时期写的一篇论文,其后几年也改动过几次,现在 csdn 也支持显示 LaTeX 公式了(利用mathjax),于是把这篇文章搬到这里来,顺便熟悉一下 MarkDown 编辑器编辑数学公式.

椭圆曲线将其所在平面分成了三个部分:椭圆内部、椭圆曲线上、椭圆外部,对于椭圆曲线上的点,正如大家所熟知的,它们的坐标都满足椭圆的方程:

x2a2+y2b2=1

而对于椭圆内部的点,它们的坐标都满足不等式:
x2a2+y2b2<1

这个很好理解,对于椭圆内部任何一点,总能在椭圆上找到一个对应点,使其横坐标相同而纵坐标的绝对值大于椭圆内的点,而椭圆曲线上的这个对应点的坐标满足方程 ??? ,那么椭圆内的点的坐标满足不等式 ??? 就是显然的事情了。
至于椭圆外部的点,那就只有成立不等式:
x2a2+y2b2>1

因为之前椭圆曲线与其方程之间以及椭圆内部的平面区域与其不等式之间都是可以互推的。

接下来讨论椭圆的切线问题,在椭圆上任取一个点 P(x0,y0) ,那么该点处的切线方程将是:

x0xa2+y0yb2=1

椭圆上一点的切线
这直线为何就是切线方程呢?在这直线上任取一点 T(xT,yT) ,有:
(x20a2+y20b2)+(x2Ta2+y2Tb2)2(x0xTa2+y0yTb2</
### 计算机视觉中极点线的概念 在计算机视觉领域,特别是双目或多视角几何分析中,极点(Epipole)和线(Epipolar Line)扮演着重要角色。对于两台摄像设备拍摄同一场景的不同图像来说: - **极点**是指一台摄像机的光心在其对应另一台摄像机所摄取图像平面上投影形成的点[^4]。 考虑两个摄像机 \(C_1\) 和 \(C_2\) 的设置,在各自捕捉到的画面里会存在相应的极点 \(e_1\) 和 \(e_2\) 。这两个特殊的位置代表了一个摄像机相对于另一个摄像机视线方向的信息。 - **线**则是指某一点在一个摄像机视图下的映射路径,在另一个摄像机视图下表现为一条直线。具体而言,如果已知某个特征点位于第一个摄像机视野内的特定位置,则该点对应的匹配候选者必定落在第二个摄像机视野内的一条直线上—即所谓的线上[^3]。 这种关系有助于减少寻找配对像素的工作量并提高效率,因为只需要在一维空间而非整个二维图像区域内搜索可能的匹配对象。 #### 极点线的关系 当讨论极点线时,还涉及到几个重要的概念: - 对于任意一对共轭点 (即来自不同摄像头但在三维世界中有相同物理位置),它们分别所在的两条线必然相交于各自的极点处。 - 如果我们设定了一个参考系使得其中一个摄像机处于原点位置 (\(O\)) ,那么另一个摄像机(\(O'\)) 到这个参考帧的距离向量定义了摄影基线\(OO'\)。 - 所有包含这条基线在内的平面都叫做平面(epipolar planes), 它们会在每个成像平面上形成一组平行线 — 即线集合。 ### 极点线的应用实例 为了更好地理解如何利用这些理论来解决实际问题,可以看下面的例子: 假设有一个机器人正在执行物体识别任务,并配备了前后两个RGB-D传感器用于获取环境信息。此时可以通过计算前后的极点以及相应的目标物象素间的线关联来进行快速而精确的空间定位。 ```python import numpy as np def compute_epiline(F, point): """ Given a fundamental matrix F and a point from one image, computes the corresponding epipolar line in another image. Args: F (numpy.ndarray): Fundamental Matrix of shape (3, 3). point (tuple or list): A tuple/list containing coordinates (u,v) of a point. Returns: numpy.ndarray: Epipolar line coefficients [a,b,c]. """ u, v = point # Convert to homogeneous coordinate system p_homogeneous = np.array([u, v, 1]) # Compute epipolar line using F*p' l = F @ p_homogeneous return l / l[-1] # Example usage with dummy data points fundamental_matrix = np.random.rand(3, 3) point_in_image_A = (50, 70) epiline_B = compute_epiline(fundamental_matrix, point_in_image_A) print("The computed epipolar line is:", epiline_B) ``` 上述代码展示了基于给定的基础矩阵`F`和图像A中的单个点`(u,v)`,怎样求解出其在图像B里的线方程系数[a,b,c]的过程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值