本文是高中时期写的一篇论文,其后几年也改动过几次,现在 csdn 也支持显示 LaTeX 公式了(利用mathjax),于是把这篇文章搬到这里来,顺便熟悉一下 MarkDown 编辑器编辑数学公式.
椭圆曲线将其所在平面分成了三个部分:椭圆内部、椭圆曲线上、椭圆外部,对于椭圆曲线上的点,正如大家所熟知的,它们的坐标都满足椭圆的方程:
x2a2+y2b2=1
而对于椭圆内部的点,它们的坐标都满足不等式:
x2a2+y2b2<1
这个很好理解,对于椭圆内部任何一点,总能在椭圆上找到一个对应点,使其横坐标相同而纵坐标的绝对值大于椭圆内的点,而椭圆曲线上的这个对应点的坐标满足方程 ??? ,那么椭圆内的点的坐标满足不等式 ??? 就是显然的事情了。
至于椭圆外部的点,那就只有成立不等式:
x2a2+y2b2>1
因为之前椭圆曲线与其方程之间以及椭圆内部的平面区域与其不等式之间都是可以互推的。
接下来讨论椭圆的切线问题,在椭圆上任取一个点 P(x0,y0) ,那么该点处的切线方程将是:
x0xa2+y0yb2=1
这直线为何就是切线方程呢?在这直线上任取一点 T(xT,yT) ,有:
(x20a2+y20b2)+(x2Ta2+y2Tb2)⩾2(x0xTa2+y0yTb2</