椭圆极点极线初探

本文探讨椭圆曲线的几何性质,包括椭圆内外点的切线方程,椭圆上两点间中点的坐标特性,以及椭圆的极线概念。极线是椭圆中与给定点共轭方向的直线,根据点的位置,极线可能是切线、相交线或相离线。随着点的移动,极线表现出动态变化,揭示了椭圆的奇妙几何结构。
摘要由CSDN通过智能技术生成

本文是高中时期写的一篇论文,其后几年也改动过几次,现在 csdn 也支持显示 LaTeX 公式了(利用mathjax),于是把这篇文章搬到这里来,顺便熟悉一下 MarkDown 编辑器编辑数学公式.

椭圆曲线将其所在平面分成了三个部分:椭圆内部、椭圆曲线上、椭圆外部,对于椭圆曲线上的点,正如大家所熟知的,它们的坐标都满足椭圆的方程:

x2a2+y2b2=1

而对于椭圆内部的点,它们的坐标都满足不等式:
x2a2+y2b2<1

这个很好理解,对于椭圆内部任何一点,总能在椭圆上找到一个对应点,使其横坐标相同而纵坐标的绝对值大于椭圆内的点,而椭圆曲线上的这个对应点的坐标满足方程 ??? ,那么椭圆内的点的坐标满足不等式 ??? 就是显然的事情了。
至于椭圆外部的点,那就只有成立不等式:
x2a2+y2b2>1

因为之前椭圆曲线与其方程之间以及椭圆内部的平面区域与其不等式之间都是可以互推的。

接下来讨论椭圆的切线问题,在椭圆上任取一个点 P(x0,y0) ,那么该点处的切线方程将是:

x0xa2+y0yb2=1

椭圆上一点的切线
这直线为何就是切线方程呢?在这直线上任取一点 T(xT,yT) ,有:
(x20a2+y20b2)+(x2Ta2+y2Tb2)2(x0xTa2+y0yTb2</
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值