IF-IDF算法介绍

IF-IDF算法介绍

TF(Term Frequency,缩写为TF)也就是词频啦,即一个词在文中出现的次数,统计出来就是词频TF。
词 频 ( T F ) = 某 个 词 在 文 章 中 的 出 现 次 数 文 章 的 总 词 数 词频(TF)= \frac{某个词在文章中的出现次数}{文章的总词数} (TF)=

IDF是逆向文件频率(Inverse Document Frequency) 向文件频率 (IDF) :某一特定词语的IDF,可以由总文件数目除以包含该词语的文件的数目,再将得到的商取对数得到。
逆 文 档 频 率 ( I D F ) = l o g ( 语 料 库 的 文 档 总 数 包 含 该 词 的 文 档 数 + 1 ) 逆文档频率(IDF)= log(\frac{语料库的文档总数}{包含该词的文档数+1}) (IDF)=log(+1)

计算TF-IDF
T F − I D F = 词 频 ( T F ) x 逆 文 档 频 率 ( I D F ) TF-IDF=词频(TF)x逆文档频率(IDF) TFIDF=(TF)x(IDF)
TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。

代码

sklearn

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

## 问答库
questions = [
    {
        "index": 1,
        "question": "DNA的基本单位是什么",
        "answer": "基因就是生物传递遗传信息的物质。它遍布在人体中的每个细胞(除红细胞外)中。基因是传递生命的遗传密码和决定蛋白质的合成。从生物化学角度讲,基因是链状脱氧核糖核酸(DNA)上编译某蛋白质的一个连续片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。"
    },
    {
        "index": 2,
        "question": "DNA分子的基本组成是什么",
        "answer": "基因就是生物传递遗传信息的物质。它遍布在人体中的每个细胞(除红细胞外)中。基因是传递生命的遗传密码和决定蛋白质的合成。从生物化学角度讲,基因是链状脱氧核糖核酸(DNA)上编译某蛋白质的一个连续片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。"
    },
    {
        "index": 3,
        "question": "DNA的基本骨架由什么构成",
        "answer": "基因就是生物传递遗传信息的物质。它遍布在人体中的每个细胞(除红细胞外)中。基因是传递生命的遗传密码和决定蛋白质的合成。从生物化学角度讲,基因是链状脱氧核糖核酸(DNA)上编译某蛋白质的一个连续片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。"
    },
    {
        "index": 4,
        "question": "DNA是由哪些结构组成",
        "answer": "基因就是生物传递遗传信息的物质。它遍布在人体中的每个细胞(除红细胞外)中。基因是传递生命的遗传密码和决定蛋白质的合成。从生物化学角度讲,基因是链状脱氧核糖核酸(DNA)上编译某蛋白质的一个连续片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。"
    },
    {
        "index": 5,
        "question": "DNA是由哪几部分组成",
        "answer": "基因就是生物传递遗传信息的物质。它遍布在人体中的每个细胞(除红细胞外)中。基因是传递生命的遗传密码和决定蛋白质的合成。从生物化学角度讲,基因是链状脱氧核糖核酸(DNA)上编译某蛋白质的一个连续片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。"
    }
]

## ------------------------ CountVectorizer ---------------------------------------------
corpus = [item["question"] for item in questions]

vectorizer = CountVectorizer(analyzer ="char",lowercase=False)  # ()这里不提供先验词典
# vectorizer.fit(corpus)			# 先fit训练传入的文本数据
# X = vectorizer.transform(corpus)		# 然后对文本数据进行标记并转换为稀疏计数矩阵
X = vectorizer.fit_transform(corpus)  # 可以fit、transform一起使用替代上面的两行

print(vectorizer.get_feature_names())  # 获得模型直接分析数据找到的词汇量(上面单词的集合)
print(X.toarray())  # 直接打印X输出的是每个词的位置, 即稀疏矩阵表示转化为正常矩阵
print(vectorizer.vocabulary_) # 'D': 1表示'D'这个单词的词频显示在词频向量中的第2位

## --------------------------- TfidfTransformer -----------------------------
transform = TfidfTransformer()    # 使用TF-IDF(词频、逆文档频率)应用于稀疏矩阵
Y = transform.fit_transform(X)    # 使用上面CountVectorizer处理后的 X 数据
print(Y.toarray())                # 输出转换为tf-idf后的 Y 矩阵,同样直接打印 Y 输出每个数据的位置
print(vectorizer.get_feature_names())    # 打印特征名

## -------------------- TfidfVectorizer(CountVectorizer与TfidfTransformer的结合) -------------------
from sklearn.feature_extraction.text import TfidfVectorizer

VT = TfidfVectorizer(analyzer='char', lowercase=False)  # 先后调用CountVectorizer和TfidfTransformer两种方法(简化了代码,但运算思想还是不变)
result = VT.fit_transform(corpus)
print(result.toarray())
print(VT.get_feature_names())

代码封装

## 封装
class TfidfModel:
    def __init__(self, stop_words=None, tokenizer=None, analyzer='word'):
        self.vectorizer = TfidfVectorizer(stop_words=stop_words, 
                                          tokenizer=tokenizer, 
                                          analyzer=analyzer)

    def save(self, feature_path):
        with open(feature_path, 'wb') as fw:
            pickle.dump(self.vectorizer, fw)


    def load(self, feature_path):
        self.vectorizer = pickle.load(open(feature_path, 'rb'))

    def train(self,data):
        return self.vectorizer.fit_transform(data)

    def predict(self, data):
        return self.vectorizer.transform(data)
  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值