多视图局部鉴别与典型相关性分析方法(MLDC2A)是一种旨在融合
多视图数据的鉴别信息
、相关性信息
和局部几何结构信息
的子空间学习方法
。
这种方法旨在解决多视图学习中如何从不同视角数据中共同提取具有高度鉴别性和相关性的特征
,并同时保持数据的局部结构
,以提升分类或聚类
性能的问题。
MLDC2A方法简介
MLDC2A方法的核心思想是:
- 联合学习投影变换:为多视图数据
学习一个共享的子空间
,其中每个视图的数据通过特定的投影变换
映射到这个子空间中。这样可以使得视图内
和视图间
的类间差异最大化
,同时类内差异最小化
,从而提取出具有鉴别性的特征。 - 利用局部信息:利用多视图数据的局部信息,通过构造
近邻图
来捕捉数据的局部几何结构。这有助于保持数据的流形
结构,增强模型的分类
能力。 - 最大化视图间相关性:在共享子空间中,通过最大化不同视图间数据的
相关性
,进一步提升特征的表达能力
,使得不同视图之间的信息得到更充分的整合和利用。
具体计算步骤与公式
散度构造
假设 ,其中 , , ,表示来自第 (j) 个视图的样本集
,(c) 是类别数
,(M) 是视图数
, 是来自第 (i) 类
第 (j) 个视图的样本数
。
MLDC2A的目标是学习一个共享的公共子空间
,其中
目标函数
MLDC2A的目标函数通常包括以下几个部分:
- 类间散度最大化:
最大化视图内和视图间不同类别的样本
在投影空间中的距离
,以增强鉴别性。 - 类内散度最小化:
最小化视图内和视图间相同类别的样本
在投影空间中的距离
,以保持类内的凝聚性。 - 局部几何结构保持:通过
近邻图的权重矩阵
反映局部几何结构,确保样本的局部关系在投影后得以维持。 - 视图间相关性最大化:通过
最大化不同视图间投影特征的相关性
,增强视图间的一致性和互补性
。
公式示例
具体的目标函数可以写作:
其中, 是控制各项重要性的正则化参数。
计算步骤
- 构造近邻图:为所有视图数据构造
近邻图
,通过计算样本间的相似度
(如欧式距离或其他距离度量)并应用最近邻或K近邻规则。 - 计算散度项:基于
类间和类内样本的距离
,以及近邻图的权重矩阵
,计算相应的散度项。 - 最大化相关性:通过相关系数或其他统计量度量不同视图间特征的
相关性
,并将其纳入优化目标。 - 优化问题求解:将上述目标函数转化为优化问题,通常是一个广义特征值问题,然后利用
数值优化方法
(如梯度下降、迭代法或直接的特征值分解方法)求解投影矩阵 (W)。 - 特征变换:将原始多视图数据通过求得的
投影矩阵
(W) 进行变换,得到在共享子空间中的低维表示。
具体例子
- 假设我们有两个视图的图像数据集,每个视图代表了同一组物体的不同特征描述(如颜色和纹理)。
- 我们首先对每个视图构造局部近邻图,然后根据上述目标函数进行优化,求得
投
影矩阵 (W)。 - 之后,我们将原始的高维图像特征通过 (W) 投影到
低维子空间中
。 - 在这个过程中,MLDC2A会确保投影后的特征既包含了丰富的类别鉴别信息,又保留了每个视图内部和视图间的局部几何结构,同时增强不同视图数据的相关性,从而在图像分类或识别任务中表现出更好的性能。