深度学习编程笔记:kears基础:手写数字识别

本文是深度学习编程笔记,通过Keras不使用内置封装函数,而是直接用层方法构建神经网络,进行手写数字识别。讨论了模型的前向传播和关键代码理解,展示了使用`compile`和`fit`替换部分训练和测试过程,并添加了评价指标。最终,通过在训练过程中设置判断条件并在达到一定精度后进行测试集评估,实现了更灵活的模型训练和验证。
摘要由CSDN通过智能技术生成
1.这里是用的层的方法写的神经网络,没有用keras里面的封装函数
  • baseline
代码理解点

在代码中开始前向传播的标志是modle(x),其实这是调用了python中的一个这样的东西modle.__ call__(x),然后会自动实现call(),使x在Sequential中一层一层往下传

代码
import tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

import  os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

def preprocess(x, y):

    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    return x,y


(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape)

batchsz = 128

db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(10000).batch(batchsz)

db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
db_test = db_test.map(preprocess).batch(batchsz)

# # 生成train数据的迭代器
db_iter = iter(db)
sample = next(db_iter)
print('batch:', sample[0].shape, sample[1].shape)


model = Sequential([
    layers.Dense(256, activation=tf.nn.relu), # [b, 784] => [b, 256]
    layers.Dense(128, activation=tf.nn.relu), # [b, 256] => [b, 128]
    layers.Dense(64, activation=tf.nn.relu), # [b, 128] => [b, 64]
    layers.Dense(32, activation=tf.nn.relu), # [b, 64] => [b, 32]
    layers.Dense(10) # [b, 32] => [b, 10], 330 = 32*10 + 10
])
model.build(input_shape=[None, 28*28])
model.summary()
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3)

def main():


    for epoch in range(30):

        # step=(样本总数)/batch_size
        #表示每运行一个iteration/step,更新一次参数权重,即进行一次学习,
        #每一次更新参数需要batch size个样本进行运算学习,根据运算结果调整更新一次参数。
        for step, (x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值