NLP_情感分类_机器学习方案


项目背景

项目的目的,是为了对情感评论数据集进行预测打标。在训练之前,需要对数据进行数据清洗环节,前面已对数据进行清洗,详情可移步至NLP_情感分类_数据清洗

下面对已清洗的数据集,用机器学习方案进行处理

数据清洗

导包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pickle
import numpy as np
import gc
#import swifter
from sklearn.neural_network import MLPClassifier
import os
from sklearn.metrics import accuracy_score,f1_score,recall_score,precision_score
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm

导入数据

df = pd.read_csv('data/sentiment_analysis_clean.csv')
df = df.dropna()

切分评论及标签

X_tfidf = df['text']
y_tfidf = df['label']

TF-IDF

TfidfVectorizer是用于文本处理的重要工具之一,它将文本数据转换成数值向量形式,以便于后续的机器学习模型进行训练。TF-IDF代表Term Frequency-Inverse Document Frequency,即词频-逆文档频率算法。

TF-IDFVectorizer可以根据应用场景灵活地控制特征提取的过程,提高文本分析的效率和精度。

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数
IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

构造TF-IDF特征

from sklearn.feature_extraction.text import TfidfVectorizer

vec_tfidf = TfidfVectorizer(use_idf=True, smooth_idf=True, norm=None, max_features=1000)
array_TFIDF = vec_tfidf.fit_transform(X_tfidf)

数据切分

from sklearn.model_selection import train_test_split, StratifiedKFold
# 这里指定了random_state是为了保证每次切分数据集的结果都是一样的
Xidf_train, Xidf_test, yidf_train, yidf_test = train_test_split(array_TFIDF, y_tfidf,test_size=0.2,random_state=2024)
Xidf_train = Xidf_train.toarray()
Xidf_test = Xidf_test.toarray()

del df,array_TFIDF
gc.collect()

模型训练

def train_model(model, X_train, X_test, y_train, y_test):
    
    dic = {'lr':'Logistic Regression',
          'nb':'Naive Bayes',
          'svm':'Support Vector Machine',
          'dt':'Decision Tree',
          'rf':'Random Forest',
          'lgb':'LightGBM'}
    
    train_acc, test_acc = [], []
    
    if model == 'lr':
        clf = LogisticRegression(C=0.01, solver='liblinear')
    elif model == 'nb':
        clf = MultinomialNB(alpha=100)
    elif model == 'svm':
        clf = svm.LinearSVC(C=0.01)
    elif model == 'dt':
        clf = DecisionTreeClassifier(max_depth=100, min_samples_split= 2)
    elif model == 'rf':
        clf = RandomForestClassifier(max_depth=100,min_samples_split=5)
    elif model == 'lgb':
        clf = LGBMClassifier(learning_rate=1.0)
    else:
        print('Model doesn\'t exist')

    clf.fit(X_train, y_train)

    # predict using train data
    train_pred = clf.predict(X_train)
    train_acc = accuracy_score(y_train, train_pred)
    
    # predict using test data
    test_pred = clf.predict(X_test)
    test_acc = accuracy_score(y_test, test_pred)   

    print()
    print("Model: ", dic[model])
    print("Training accuracy: {}".format(train_acc))
    print("Test accuracy: {}".format(test_acc))
    print()

    return {
        'model_name':dic[model],
        'Train Accuracy':train_acc,
        'Test Accuracy':test_acc
    }

查看结果

metric_df = pd.DataFrame(columns=['model_name','Train Accuracy','Test Accuracy'])
for model in ['lr', 'nb', 'svm', 'dt', 'rf', 'lgb']:
    metric = train_model(model ,Xidf_train, Xidf_test, yidf_train, yidf_test)
    # 将metric转换成一个DataFrame
    metric_df = pd.concat([metric_df, pd.DataFrame([metric])], ignore_index=True)

在这里插入图片描述

metric_df

在这里插入图片描述

同类型项目

阿里云-零基础入门NLP【基于机器学习的文本分类】

阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】
也可以参考进行学习


学习的参考资料:
深度之眼

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值